release factor
   HOME

TheInfoList



OR:

A release factor is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that allows for the termination of
translation Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
by recognizing the termination codon or stop
codon Genetic code is a set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished by the ribosome, which links prote ...
in an
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
sequence. They are named so because they release new peptides from the ribosome.


Background

During translation of mRNA, most
codons Genetic code is a set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished by the ribosome, which links pro ...
are recognized by "charged"
tRNA Transfer ribonucleic acid (tRNA), formerly referred to as soluble ribonucleic acid (sRNA), is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes). In a cell, it provides the physical link between the gene ...
molecules, called
aminoacyl-tRNA Aminoacyl-tRNA (also aa-tRNA or charged tRNA) is tRNA to which its cognate amino acid is chemically bonded (charged). The aa-tRNA, along with particular elongation factors, deliver the amino acid to the ribosome for incorporation into the polyp ...
s because they are adhered to specific
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s corresponding to each tRNA's
anticodon Transfer ribonucleic acid (tRNA), formerly referred to as soluble ribonucleic acid (sRNA), is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes). In a cell, it provides the physical link between the gene ...
. In the standard
genetic code Genetic code is a set of rules used by living cell (biology), cells to Translation (biology), translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished ...
, there are three mRNA stop codons: UAG ("amber"), UAA ("ochre"), and UGA ("opal" or "umber"). Although these stop codons are triplets just like ordinary codons, they are not decoded by tRNAs. It was discovered by
Mario Capecchi Mario Ramberg Capecchi (born 6 October 1937) is an Italian-born molecular geneticist and a co-awardee of the 2007 Nobel Prize in Physiology or Medicine for discovering a method to create mice in which a specific gene is turned off, known as knoc ...
in 1967 that, instead, tRNAs do not ordinarily recognize stop codons at all, and that what he named "release factor" was not a tRNA molecule but a protein. Later, it was demonstrated that different release factors recognize different stop codons.


Classification

There are two classes of release factors. Class 1 release factors recognize stop codons; they bind to the A site of the ribosome in a way mimicking that of
tRNA Transfer ribonucleic acid (tRNA), formerly referred to as soluble ribonucleic acid (sRNA), is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes). In a cell, it provides the physical link between the gene ...
, releasing the new polypeptide as it disassembles the ribosome. Class 2 release factors are
GTPase GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a ...
s that enhance the activity of class 1 release factors. It helps the class 1 RF dissociate from the ribosome. Bacterial release factors include RF1, RF2, and RF3 (or PrfA, PrfB, PrfC in the "peptide release factor" gene nomenclature). RF1 and RF2 are class 1 RFs: RF1 recognizes UAA and UAG while RF2 recognizes UAA and UGA. RF3 is the class 2 release factor. Eukaryotic and archaeal release factors are named analogously, with the naming changed to "eRF" for "eukaryotic release factor" and vice versa. a/eRF1 can recognize all three stop codons, while eRF3 (archaea use aEF-1α instead) works just like RF3. The bacterial and archaeo-eukaryotic release factors are believed to have evolved separately. The two groups class 1 factors do not show sequence or structural homology with each other. The homology in class 2 is restricted to the fact that both are
GTPase GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a ...
s. It is believed that (b)RF3 evolved from EF-G while eRF3 evolved from eEF1α. In line with their symbiotic origin, eukaryotic mitochondria and plastids use bacterial-type class I release factors. , no definite reports of an organellar class II release factor can be found.


Human genes

* RF1 (mitochondrial): MTRF1, MTRF1L, MRPL58 (ICT1), MTRFR (C12orf65) * eRF1: ETF1 * eRF3: GSPT1, GSPT2


Structure and function

Crystal structures have been solved for bacterial 70S ribosome bound to each of the three release factors, revealing details in codon recognition by RF1/2 and the EF-G-like rotation of RF3.
Cryo-EM Cryogenic electron microscopy (cryo-EM) is a transmission electron microscopy technique applied to samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An ...
structures have been obtained for eukaryotic mamallian 80S ribosome bound to eRF1 and/or eRF3, providing a view of structural rearrangements caused by the factors. Fitting the EM images to previously known crystal structures of individual parts provides identification and a more detailed view of the process. In both systems, the class II (e)RF3 binds to the universal GTPase site on the ribosome, while the class I RFs occupy the A site.


Bacterial

The bacterial class 1 release factors can be divided into four domains. The catalytically-important domains are: * The "tripeptide anticodon" motif in domain 2, in RF1 and in RF2. Only one residue actually participates in stop codon recognition via hydrogen bonding. * The GGQ motif in domain 3, critical for peptidyl-tRNA hydrolase (PTH) activity. As RF1/2 sits in the A site of the ribosome, domains 2, 3, and 4 occupy the space that tRNAs load into during elongation. Stop codon recognition activates the RF, promoting a compact to open conformation change, sending the GGQ motif to the peptidyl transferase center (PTC) next to the 3′ end of the P-site tRNA. By hydrolysis of the peptidyl-tRNA ester bond, which displayed pH-dependence ''in vitro'', the peptide is cut loose and released. RF3 is still needed to release RF1/2 from this translation termination complex. After releasing the peptide, ribosomal recycling is still required to empty the P-site tRNA and mRNA out to make the ribosome usable again. This is done by splitting the ribosome with factors like IF1IF3 or RRFEF-G.


Eukaryotic and archaeal

eRF1 can be broken down into four domains: N-terminal (N), Middle (M), C-terminal (C), plus a minidomain: * The N domain is responsible for stop codon recognition. Motifs include and . * A GGQ motif in the M domain is critical for peptidyl-tRNA hydrolase (PTH) activity. Unlike in the bacterial version, eRF1–eRF3–GTP binds together into a sub-complex, via a motif on RF3. Stop codon recognition makes eRF3 hydrolyze the GTP, and the resulting movement puts the GGQ into the PTC to allow for hydrolysis. The movement also causes a +2-nt movement of the toeprint of the pre-termination complex. The archaeal aRF1–EF1α–GTP complex is similar. The triggering mechanism is similar to that of aa-tRNAEF-Tu–GTP. A homologous system is Dom34/ PelotaHbs1, a eukaryotic system that breaks up stalled ribosomes. It does not have GGQ. The recycling and breakup is mediated by ABCE1.


References


External links

* {{GeneticTranslation Proteins Protein biosynthesis