HOME

TheInfoList



OR:

A release factor is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
that allows for the termination of
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
by recognizing the termination codon or stop
codon The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
in an
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
sequence. They are named so because they release new peptides from the ribosome.


Background

During translation of mRNA, most codons are recognized by "charged"
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ...
molecules, called aminoacyl-tRNAs because they are adhered to specific
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
s corresponding to each tRNA's anticodon. In the standard genetic code, there are three mRNA stop codons: UAG ("amber"), UAA ("ochre"), and UGA ("opal" or "umber"). Although these stop codons are triplets just like ordinary codons, they are not decoded by tRNAs. It was discovered by Mario Capecchi in 1967 that, instead, tRNAs do not ordinarily recognize stop codons at all, and that what he named "release factor" was not a tRNA molecule but a protein. Later, it was demonstrated that different release factors recognize different stop codons.


Classification

There are two classes of release factors. Class 1 release factors recognize stop codons; they bind to the A site of the ribosome in a way mimicking that of
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ...
, releasing the new polypeptide as it disassembles the ribosome. Class 2 release factors are GTPases that enhance the activity of class 1 release factors. It helps the class 1 RF dissociate from the ribosome. Bacterial release factors include RF1, RF2, and RF3 (or PrfA, PrfB, PrfC in the "peptide release factor" gene nomenclature). RF1 and RF2 are class 1 RFs: RF1 recognizes UAA and UAG while RF2 recognizes UAA and UGA. RF3 is the class 2 release factor. Eukaryotic and archaeal release factors are named analogously, with the naming changed to "eRF" for "eukaryotic release factor" and vice versa. a/eRF1 can recognize all three stop codons, while eRF3 (archaea use aEF-1α instead) works just like RF3. The bacterial and archaeo-eukaryotic release factors are believed to have evolved separately. The two groups class 1 factors do not show sequence or structural homology with each other. The homology in class 2 is restricted to the fact that both are GTPases. It is believed that (b)RF3 evolved from EF-G while eRF3 evolved from eEF1α. In line with their symbiotic origin, eukaryotic mitochondria and plastids use bacterial-type class I release factors. , no definite reports of an organellar class II release factor can be found.


Human genes

* RF1 (mitochondrial): MTRF1,
MTRF1L Mitochondrial translational release factor 1-like is a protein that in humans is encoded by the MTRF1L gene. Mitochondrial DNA encodes 13 proteins that play essential roles in the respiratory chain, while all proteins involved in mitochondrial ...
, MRPL58 (ICT1), MTRFR (C12orf65) * eRF1: ETF1 * eRF3: GSPT1, GSPT2


Structure and function

Crystal structures have been solved for bacterial 70S ribosome bound to each of the three release factors, revealing details in codon recognition by RF1/2 and the EF-G-like rotation of RF3. Cryo-EM structures have been obtained for eukaryotic mamallian 80S ribosome bound to eRF1 and/or eRF3, providing a view of structural rearrangements caused by the factors. Fitting the EM images to previously known crystal structures of individual parts provides identification and a more detailed view of the process. In both systems, the class II (e)RF3 binds to the universal GTPase site on the ribosome, while the class I RFs occupy the A site.


Bacterial

The bacterial class 1 release factors can be divided into four domains. The catalytically-import domains are: * The "tripeptide anticodon" motif in domain 2, in RF1 and in RF2. Only one residue actually participates in stop codon recognition via hydrogen bonding. * The GGQ motif in domain 3, critical for peptidyl-tRNA hydrolase (PTH) activity. As RF1/2 sits in the A site of the ribosome, domains 2, 3, and 4 occupy the space that tRNAs load into during elongation. Stop codon recognition activates the RF, promoting a compact to open conformation change, sending the GGQ motif to the peptidyl transferase center (PTC) next to the 3′ end of the P-site tRNA. By hydrolysis of the peptidyl-tRNA ester bond, which displayed pH-dependence ''in vitro'', the peptide is cut loose and released. RF3 is still needed to release RF1/2 from this translation termination complex. After releasing the peptide, ribosomal recycling is still required to empty the P-site tRNA and mRNA out to make the ribosome usable again. This is done by splitting the ribosome with factors like IF1IF3 or RRFEF-G.


Eukaryotic and archaeal

eRF1 can be broken down into four domains: N-terminal (N), Middle (M), C-terminal (C), plus a minidomain: * The N domain is responsible for stop codon recognition. Motifs include and . * A GGQ motif in the M domain is critical for peptidyl-tRNA hydrolase (PTH) activity. Unlike in the bacterial version, eRF1–eRF3–GTP binds together into a sub-complex, via a motif on RF3. Stop codon recognition makes eRF3 hydrolyze the GTP, and the resulting movement puts the GGQ into the PTC to allow for hydrolysis. The movement also causes a +2-nt movement of the toeprint of the pre-termination complex. The archaeal aRF1–EF1α–GTP complex is similar. The triggering mechanism is similar to that of
aa-tRNA Aminoacyl-tRNA (also aa-tRNA or charged tRNA) is tRNA to which its cognate amino acid is chemically bonded (charged). The aa-tRNA, along with particular elongation factors, deliver the amino acid to the ribosome for incorporation into the polypept ...
EF-Tu–GTP. A homologous system is Dom34/ PelotaHbs1, a eukaryotic system that breaks up stalled ribosomes. It does not have GGQ. The recycling and breakup is mediated by
ABCE1 ATP-binding cassette sub-family E member 1 (ABCE1) also known as RNase L inhibitor (RLI) is an enzyme that in humans is encoded by the ABCE1 gene. ABCE1 is an ATPase that is a member of the ATP-binding cassette (ABC) transporters superfamily an ...
.


References


External links

* {{GeneticTranslation Proteins Protein biosynthesis