HOME

TheInfoList



OR:

In
radiobiology Radiobiology (also known as radiation biology, and uncommonly as actinobiology) is a field of clinical and basic medical sciences that involves the study of the action of ionizing radiation on living things, especially health effects of radiation. ...
, the relative biological effectiveness (often abbreviated as RBE) is the ratio of biological effectiveness of one type of ionizing radiation relative to another, given the same amount of absorbed energy. The RBE is an empirical value that varies depending on the type of ionizing radiation, the energies involved, the biological effects being considered such as cell death, and the oxygen tension of the tissues or so-called
oxygen effect In biochemistry, the oxygen effect refers to a tendency for increased radiosensitivity of free living cells and organisms in the presence of oxygen than in anoxic or hypoxic conditions, where the oxygen tension is less than 1% of atmospheric press ...
.


Application

The absorbed dose can be a poor indicator of the biological effect of radiation, as the biological effect can depend on many other factors, including the type of radiation, energy, and type of tissue. The relative biological effectiveness can help give a better measure of the biological effect of radiation. The relative biological effectiveness for radiation of type ''R'' on a tissue is defined as the ratio :RBE= \frac where ''D''''X'' is a reference absorbed dose of radiation of a standard type ''X'', and ''D''''R'' is the absorbed dose of radiation of type ''R'' that causes the same amount of biological damage. Both doses are quantified by the amount of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
absorbed in the cells. Different types of radiation have different biological effectiveness mainly because they transfer their energy to the tissue in different ways. Photons and beta particles have a low linear energy transfer (LET) coefficient, meaning that they ionize atoms in the tissue that are spaced by several hundred nanometers (several tenths of a micrometer) apart, along their path. In contrast, the much more massive alpha particles and neutrons leave a denser trail of ionized atoms in their wake, spaced about one tenth of a nanometer apart (i.e., less than one-thousandth of the typical distance between ionizations for photons and beta particles). RBEs can be used for either cancer/hereditary risks ( stochastic) or for harmful tissue reactions ( deterministic) effects. Tissues have different RBEs depending on the type of effect. For high LET radiation (i.e., alphas and neutrons), the RBEs for deterministic effects tend to be lower than those for stochastic effects. The concept of RBE is relevant in medicine, such as in
radiology Radiology ( ) is the medical discipline that uses medical imaging to diagnose diseases and guide their treatment, within the bodies of humans and other animals. It began with radiography (which is why its name has a root referring to radiat ...
and radiotherapy, and to the evaluation of risks and consequences of
radioactive contamination Radioactive contamination, also called radiological pollution, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is unintended or undesirab ...
in various contexts, such as nuclear power plant operation, nuclear fuel disposal and reprocessing,
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
s,
uranium mining Uranium mining is the process of extraction of uranium ore from the ground. Over 50 thousand tons of uranium were produced in 2019. Kazakhstan, Canada, and Australia were the top three uranium producers, respectively, and together account f ...
, and ionizing radiation safety.


Relation to radiation weighting factors (WR)

For the purposes of computing the
equivalent dose Equivalent dose is a dose quantity '' H '' representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the p ...
to an organ or tissue, the
International Commission on Radiological Protection The International Commission on Radiological Protection (ICRP) is an independent, international, non-governmental organization, with the mission to protect people, animals, and the environment from the harmful effects of ionising radiation. Its r ...
(ICRP) has defined a standard set of radiation weighting factors (WR), formerly termed the quality factor (''Q)''. The radiation weighting factors convert absorbed dose (measured in SI units of
gray Grey (more common in British English) or gray (more common in American English) is an intermediate color between black and white. It is a neutral or achromatic color, meaning literally that it is "without color", because it can be composed o ...
s or non-SI rads) into formal biological
equivalent dose Equivalent dose is a dose quantity '' H '' representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the p ...
for radiation exposure (measured in units of
sievert The sievert (symbol: SvNot be confused with the sverdrup or the svedberg, two non-SI units that sometimes use the same symbol.) is a unit in the International System of Units (SI) intended to represent the stochastic health risk of ionizing rad ...
s or rem). However, ICRP states: "The quantities equivalent dose and effective dose should not be used to quantify higher radiation doses or to make decisions on the need for any treatment related to tissue reactions .e., deterministic effects For such purposes, doses should be evaluated in terms of absorbed dose (in gray, Gy), and where high-LET radiations (e.g., neutrons or alpha particles) are involved, an absorbed dose, weighted with an appropriate RBE, should be used" Radiation weighting factors are largely based on the RBE of radiation for stochastic health risks. However, for simplicity, the radiation weighting factors are not dependent on the type of tissue, and the values are conservatively chosen to be greater than the bulk of experimental values observed for the most sensitive cell types, with respect to external (external to the cell) sources. Radiation weighting factors have not been developed for internal sources of heavy ions, such as a recoil nucleus. The ICRP 2007 standard values for relative effectiveness are given below. The higher radiation weighting factor for a type of radiation, the more damaging it is, and this is incorporated into the calculation to convert from gray to sievert units. Radiation weighting factors that go from physical energy to biological effect must not be confused with tissue weighting factors. The tissue weighting factors are used to convert an
equivalent dose Equivalent dose is a dose quantity '' H '' representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the p ...
to a given tissue in the body, to an effective dose, a number that provides an estimation of total danger to the whole organism, as a result of the radiation dose to part of the body.


Experimental methods

Typically the evaluation of relative biological effectiveness is done on various types of living cells grown in
culture medium A growth medium or culture medium is a solid, liquid, or semi-solid designed to support the growth of a population of microorganisms or cells via the process of cell proliferation or small plants like the moss ''Physcomitrella patens''. Differe ...
, including
prokaryotic A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
cells such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
, simple
eukaryotic Eukaryotes () are organisms whose Cell (biology), cells have a cell nucleus, nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the ...
cells such as single celled plants, and advanced eukaryotic cells derived from organisms such as rats. The doses are adjusted to the LD-30 point; that is, to the amount that will cause 30% of the cells to become unable to undergo
mitotic division In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
(or, for bacteria,
binary fission Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that ta ...
), thus being effectively sterilized — even if they can still carry out other cellular functions.
LD-50 In toxicology, the median lethal dose, LD50 (abbreviation for "lethal dose, 50%"), LC50 (lethal concentration, 50%) or LCt50 is a toxic unit that measures the lethal dose of a toxin, radiation, or pathogen. The value of LD50 for a substance is th ...
is more commonly used, but whoever drew the plot did not realise that the grid line closest to halfway between factors of 10 on a log plot is actually 3, not 5. LD-50 values are actually 1 gray for Carbon ions and 3 grays for photons. The types ''R'' of ionizing radiation most considered in RBE evaluation are
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s and gamma radiation (both consisting of
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s),
alpha radiation Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
s (
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consis ...
nuclei),
beta radiation A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β� ...
(
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s and positrons),
neutron radiation Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new isotopes— ...
, and heavy nuclei, including the fragments of nuclear fission. For some kinds of radiation, the RBE is strongly dependent on the energy of the individual particles.


Dependence on tissue type

Early on it was found that X-rays, gamma rays, and beta radiation were essentially equivalent for all cell types. Therefore, the standard radiation type ''X'' is generally an X-ray beam with 250 
keV Kev can refer to: Given name * Kev Adams, French comedian, actor, screenwriter and film producer born Kevin Smadja in 1991 * Kevin Kev Carmody (born 1946), Indigenous Australian singer-songwriter * Kev Coghlan (born 1988), Scottish Grand Prix moto ...
photons or
cobalt-60 Cobalt-60 (60Co) is a synthetic radioactive isotope of cobalt with a half-life of 5.2713 years. It is produced artificially in nuclear reactors. Deliberate industrial production depends on neutron activation of bulk samples of the monoisot ...
gamma rays. As a result, the relative biological effectiveness of beta and photon radiation is essentially 1. For other radiation types, the RBE is not a well-defined physical quantity, since it varies somewhat with the type of tissue and with the precise place of absorption within the cell. Thus, for example, the RBE for alpha radiation is 2–3 when measured on
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
, 4–6 for simple
eukaryotic Eukaryotes () are organisms whose Cell (biology), cells have a cell nucleus, nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the ...
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
s, and 6–8 for higher eukaryotic cells. According to one source it may be much higher (6500 with X rays as the reference) on ovocytes. The RBE of neutrons is 4–6 for bacteria, 8–12 for simple eukaryotic cells, and 12–16 for higher eukaryotic cells.


Dependence on source location

In the early experiments, the sources of radiation were all external to the cells that were irradiated. However, since alpha particles cannot traverse the outermost dead layer of human skin, they can do significant damage only if they come from the decay of atoms inside the body. Since the range of an alpha particle is typically about the diameter of a single eukaryotic cell, the precise location of the emitting atom in the tissue cells becomes significant. For this reason, it has been suggested that the health impact of contamination by alpha emitters might have been substantially underestimated. Measurements of RBE with external sources also neglect the ionization caused by the
recoil Recoil (often called knockback, kickback or simply kick) is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force r ...
of the parent-nucleus due to the alpha decay. While the recoil of the parent-nucleus of the decaying atom typically carries only about 2% of the energy of the alpha-particle that is emitted by the decaying atom, its range is extremely short (about 2–3 angstroms), due to its high
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
and high
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
. The parent nucleus is required to recoil, upon emission of an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pr ...
, with a discrete kinetic energy due to
conservation of momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
. Thus, all of the ionization energy from the recoil-nucleus is deposited in an extremely small volume near its original location, typically in the cell nucleus on the chromosomes, which have an affinity for heavy metals. The bulk of studies, using sources that are external to the cell, have yielded RBEs between 10 and 20. Since most of the ionization damage from the travel of the alpha particle is deposited in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, whereas from the travel of the recoil-nucleus is on the DNA itself, it is likely greater damage is caused by the recoil nucleus than by the alpha particle itself.


History

In 1931, Failla and Henshaw reported on determination of the relative biological effectiveness (RBE) of x rays and γ rays. This appears to be the first use of the term ‘RBE’. The authors noted that RBE was dependent on the experimental system being studied. Somewhat later, it was pointed out by Zirkle et al. (1952) that the biological effectiveness depends on the spatial distribution of the energy imparted and the density of ionisations per unit path length of the ionising particles. Zirkle et al. coined the term ‘linear energy transfer (LET)’ to be used in radiobiology for the stopping power, i.e. the energy loss per unit path length of a charged particle. The concept was introduced in the 1950s, at a time when the deployment of nuclear weapons and nuclear reactors spurred research on the biological effects of artificial radioactivity. It had been noticed that those effects depended both on the type and
energy spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of the radiation, and on the kind of living tissue. The first systematic experiments to determine the RBE were conducted in that decade.


See also

*
Background radiation Background radiation is a measure of the level of ionizing radiation present in the environment at a particular location which is not due to deliberate introduction of radiation sources. Background radiation originates from a variety of source ...
* Linear energy transfer (LET) * Theory of dual radiation action


References

{{reflist, 30em


External links


Relative Biological Effectiveness in Ion Beam Therapy
Radiation health effects