HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a regular polytope is a
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
whose
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are regular polytopes of dimension . Regular polytopes are the generalized analog in any number of dimensions of
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s (for example, the
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
or the regular pentagon) and regular polyhedra (for example, the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
). The strong symmetry of the regular polytopes gives them an
aesthetic Aesthetics, or esthetics, is a branch of philosophy that deals with the nature of beauty and taste, as well as the philosophy of art (its own area of philosophy that comes out of aesthetics). It examines aesthetic values, often expressed t ...
quality that interests both non-mathematicians and mathematicians. Classically, a regular polytope in dimensions may be defined as having regular
facets A facet is a flat surface of a geometric shape, e.g., of a cut gemstone. Facet may also refer to: Arts, entertainment, and media * ''Facets'' (album), an album by Jim Croce * ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
(-faces) and regular
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s. These two conditions are sufficient to ensure that all faces are alike and all vertices are alike. Note, however, that this definition does not work for abstract polytopes. A regular polytope can be represented by a
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mo ...
of the form with regular facets as and regular vertex figures as


Classification and description

Regular polytopes are classified primarily according to their dimensionality. They can be further classified according to
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
. For example, the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
and the regular
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
share the same symmetry, as do the regular
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
and
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
. Indeed, symmetry groups are sometimes named after regular polytopes, for example the tetrahedral and icosahedral symmetries. Three special classes of regular polytope exist in every dimension: *
Regular simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
*
Measure polytope In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, per ...
(Hypercube) *
Cross polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
(Orthoplex) In two dimensions, there are infinitely many
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s. In three and four dimensions, there are several more regular polyhedra and 4-polytopes besides these three. In five dimensions and above, these are the only ones. See also the
list of regular polytopes This article lists the regular polytopes and regular polytope compounds in Euclidean, spherical and hyperbolic spaces. The Schläfli symbol describes every regular tessellation of an ''n''-sphere, Euclidean and hyperbolic spaces. A Schläfli ...
. In one dimension, the
Line Segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between i ...
simultaneously serves as all of these polytopes, and in two dimensions, the square can act as both the Measure Polytope and Cross Polytope at the same time. The idea of a polytope is sometimes generalised to include related kinds of geometrical object. Some of these have regular examples, as discussed in the section on historical discovery below.


Schläfli symbols

A concise symbolic representation for regular polytopes was developed by Ludwig Schläfli in the 19th Century, and a slightly modified form has become standard. The notation is best explained by adding one dimension at a time. *A
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
having ''n'' sides is denoted by . So an equilateral triangle is , a square , and so on indefinitely. A regular
star polygon In geometry, a star polygon is a type of non- convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operatio ...
which winds ''m'' times around its centre is denoted by the fractional value , where ''n'' and ''m'' are co-prime, so a regular
pentagram A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle arou ...
is . *A regular polyhedron having faces with ''p'' faces joining around a vertex is denoted by . The nine regular polyhedra are and . is the ''
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
'' of the polyhedron. *A regular 4-polytope having cells with ''q'' cells joining around an edge is denoted by . The vertex figure of the 4-polytope is a . *A regular 5-polytope is an . And so on.


Duality of the regular polytopes

The dual of a regular polytope is also a regular polytope. The Schläfli symbol for the dual polytope is just the original symbol written backwards: is self-dual, is dual to , to and so on. The
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
of a regular polytope is the dual of the dual polytope's facet. For example, the vertex figure of is , the dual of which is — a
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
of . The measure and
cross polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
s in any dimension are dual to each other. If the Schläfli symbol is
palindromic A palindrome is a word, number, phrase, or other sequence of symbols that reads the same backwards as forwards, such as the words ''madam'' or ''racecar'', the date and time ''11/11/11 11:11,'' and the sentence: "A man, a plan, a canal – Pana ...
, i.e. reads the same forwards and backwards, then the polyhedron is self-dual. The self-dual regular polytopes are: * All
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s, . * All regular ''n''-
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
es, * The regular
24-cell In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, o ...
in 4 dimensions, . * The great 120-cell () and
grand stellated 120-cell In geometry, the grand stellated 120-cell or grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol . It is one of 10 regular Schläfli-Hess polytopes. It is also one of two such polytopes that is self-dual. Relat ...
() in 4 dimensions. * All regular ''n''-dimensional cubic honeycombs, . These may be treated as infinite polytopes. * Hyperbolic tilings and honeycombs (tilings with p>4 in 2 dimensions, , . , , and in 3 dimensions, in 4 dimensions, and in 5 dimensions).


Regular simplices

Begin with a point ''A''. Mark point ''B'' at a distance ''r'' from it, and join to form a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between i ...
. Mark point ''C'' in a second,
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
, dimension at a distance ''r'' from both, and join to ''A'' and ''B'' to form an
equilateral triangle In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
. Mark point ''D'' in a third, orthogonal, dimension a distance ''r'' from all three, and join to form a regular
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all ...
. And so on for higher dimensions. These are the regular simplices or simplexes. Their names are, in order of dimensionality: :0. Point :1.
Line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between i ...
:2.
Equilateral triangle In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
(regular trigon) :3. Regular
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all ...
:4. Regular
pentachoron In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
''or'' 4-simplex :5. Regular
hexateron In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-si ...
''or'' 5-simplex :... An ''n''-simplex has ''n''+1 vertices.


Measure polytopes (hypercubes)

Begin with a point ''A''. Extend a line to point ''B'' at distance ''r'', and join to form a line segment. Extend a second line of length ''r'', orthogonal to ''AB'', from ''B'' to ''C'', and likewise from ''A'' to ''D'', to form a
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
''ABCD''. Extend lines of length ''r'' respectively from each corner, orthogonal to both ''AB'' and ''BC'' (i.e. upwards). Mark new points ''E'',''F'',''G'',''H'' to form the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
''ABCDEFGH''. And so on for higher dimensions. These are the measure polytopes or hypercubes. Their names are, in order of dimensionality: :0. Point :1. Line segment :2.
Square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
(regular tetragon) :3.
Cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
(regular hexahedron) :4.
Tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
(regular octachoron) ''or'' 4-cube :5.
Penteract In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tessera ...
(regular decateron) ''or'' 5-cube :... An ''n''-cube has ''2n'' vertices.


Cross polytopes (orthoplexes)

Begin with a point ''O''. Extend a line in opposite directions to points ''A'' and ''B'' a distance ''r'' from ''O'' and 2''r'' apart. Draw a line ''COD'' of length 2''r'', centred on ''O'' and orthogonal to ''AB''. Join the ends to form a
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
''ACBD''. Draw a line ''EOF'' of the same length and centered on 'O', orthogonal to ''AB'' and ''CD'' (i.e. upwards and downwards). Join the ends to the square to form a regular
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
. And so on for higher dimensions. These are the cross polytopes or orthoplexes. Their names are, in order of dimensionality: :0. Point :1. Line segment :2. Square (regular tetragon) :3. Regular
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
:4. Regular hexadecachoron (
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the ...
) ''or'' 4-orthoplex :5. Regular triacontakaiditeron (
Pentacross In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regular wi ...
) ''or'' 5-orthoplex :... An ''n''-orthoplex has ''2n'' vertices.


History of discovery


Convex polygons and polyhedra

The earliest surviving mathematical treatment of regular polygons and polyhedra comes to us from
ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic pe ...
mathematicians. The five
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s were known to them.
Pythagoras Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samian, or simply ; in Ionian Greek; ) was an ancient Ionian Greek philosopher and the eponymous founder of Pythagoreanism. His poli ...
knew of at least three of them and
Theaetetus Theaetetus (Θεαίτητος) is a Greek name which could refer to: * Theaetetus (mathematician) (c. 417 BC – 369 BC), Greek geometer * ''Theaetetus'' (dialogue), a dialogue by Plato, named after the geometer * Theaetetus (crater) Theaetetus ...
(c. 417 BC – 369 BC) described all five. Later,
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
wrote a systematic study of mathematics, publishing it under the title '' Elements'', which built up a logical theory of geometry and
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Ma ...
. His work concluded with mathematical descriptions of the five
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s. :


Star polygons and polyhedra

Our understanding remained static for many centuries after Euclid. The subsequent history of the regular polytopes can be characterised by a gradual broadening of the basic concept, allowing more and more objects to be considered among their number.
Thomas Bradwardine Thomas Bradwardine (c. 1300 – 26 August 1349) was an English cleric, scholar, mathematician, physicist, courtier and, very briefly, Archbishop of Canterbury. As a celebrated scholastic philosopher and doctor of theology, he is often ca ...
(Bradwardinus) was the first to record a serious study of star polygons. Various star polyhedra appear in Renaissance art, but it was not until
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
studied the
small stellated dodecahedron In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeti ...
and the
great stellated dodecahedron In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each ve ...
in 1619 that he realised these two were regular.
Louis Poinsot Louis Poinsot (3 January 1777 – 5 December 1859) was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could be resolved into a single force and a ...
discovered the
great dodecahedron In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel pentagon ...
and
great icosahedron In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeti ...
in 1809, and Augustin Cauchy proved the list complete in 1812. These polyhedra are known as collectively as the Kepler-Poinsot polyhedra.


Higher-dimensional polytopes

It was not until the 19th century that a Swiss mathematician, Ludwig Schläfli, examined and characterised the regular polytopes in higher dimensions. His efforts were first published in full in , six years posthumously, although parts of it were published in and . Between 1880 and 1900, Schläfli's results were rediscovered independently by at least nine other mathematicians — see for more details. Schläfli called such a figure a "polyschem" (in English, "polyscheme" or "polyschema"). The term "polytope" was introduced by
Reinhold Hoppe Ernst Reinhold Eduard Hoppe (November 18, 1816 – May 7, 1900) was a German mathematician who worked as a professor at the University of Berlin. Education and career Hoppe was a student of Johann August Grunert at the University of Greifswald, gr ...
, one of Schläfli's rediscoverers, in 1882, and first used in English by
Alicia Boole Stott Alicia Boole Stott (8 June 1860 – 17 December 1940) was an Irish mathematician. Despite never holding an academic position, she made a number of valuable contributions to the field, receiving an honorary doctorate from the University of Gr ...
some twenty years later. The term "polyhedroids" was also used in earlier literature (Hilbert, 1952). is probably the most comprehensive printed treatment of Schläfli's and similar results to date. Schläfli showed that there are six regular convex polytopes in 4 dimensions. Five of them can be seen as analogous to the Platonic solids: the 4-simplex (or pentachoron) to the
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all ...
, the
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, p ...
(or
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
) to the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
, the 4-orthoplex (or hexadecachoron or
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the ...
) to the
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, the
120-cell In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, he ...
to the
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
, and the
600-cell In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from ...
to the
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
. The sixth, the
24-cell In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, o ...
, can be seen as a transitional form between the hypercube and 16-cell, analogous to the way that the
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
and the
rhombic dodecahedron In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron. Properties The rhombic dodecahed ...
are transitional forms between the cube and the octahedron. In five and more dimensions, there are exactly three regular polytopes, which correspond to the tetrahedron, cube and octahedron: these are the regular simplices, measure polytopes and cross polytopes. Descriptions of these may be found in the
list of regular polytopes This article lists the regular polytopes and regular polytope compounds in Euclidean, spherical and hyperbolic spaces. The Schläfli symbol describes every regular tessellation of an ''n''-sphere, Euclidean and hyperbolic spaces. A Schläfli ...
. Also of interest are the star
regular 4-polytope In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star reg ...
s, partially discovered by Schläfli. By the end of the 19th century, mathematicians such as
Arthur Cayley Arthur Cayley (; 16 August 1821 – 26 January 1895) was a prolific British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics. As a child, Cayley enjoyed solving complex maths problem ...
and Ludwig Schläfli had developed the theory of regular polytopes in four and higher dimensions, such as the
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
and the
24-cell In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, o ...
. The latter are difficult (though not impossible) to visualise, but still retain the aesthetically pleasing symmetry of their lower-dimensional cousins. The
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
contains 8 cubical cells. It consists of two cubes in parallel hyperplanes with corresponding vertices cross-connected in such a way that the 8 cross-edges are equal in length and orthogonal to the 12+12 edges situated on each cube. The corresponding faces of the two cubes are connected to form the remaining 6 cubical faces of the
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
. The
24-cell In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, o ...
can be derived from the
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
by joining the 8 vertices of each of its cubical faces to an additional vertex to form the four-dimensional analogue of a pyramid. Both figures, as well as other 4-dimensional figures, can be directly visualised and depicted using 4-dimensional stereographs. Harder still to imagine are the more modern abstract regular polytopes such as the 57-cell or the 11-cell. From the mathematical point of view, however, these objects have the same aesthetic qualities as their more familiar two and three-dimensional relatives. At the start of the 20th century, the definition of a regular polytope was as follows. *A regular polygon is a polygon whose edges are all equal and whose angles are all equal. *A regular polyhedron is a polyhedron whose faces are all congruent regular polygons, and whose
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s are all congruent and regular. *And so on, a regular ''n''-polytope is an ''n''-dimensional polytope whose (''n'' − 1)-dimensional faces are all regular and congruent, and whose vertex figures are all regular and congruent. This is a "recursive" definition. It defines regularity of higher dimensional figures in terms of regular figures of a lower dimension. There is an equivalent (non-recursive) definition, which states that a polytope is regular if it has a sufficient degree of symmetry. * An ''n''-polytope is regular if any set consisting of a vertex, an edge containing it, a 2-dimensional face containing the edge, and so on up to ''n''−1 dimensions, can be mapped to any other such set by a symmetry of the polytope. So for example, the cube is regular because if we choose a vertex of the cube, and one of the three edges it is on, and one of the two faces containing the edge, then this triplet, or
flag A flag is a piece of fabric (most often rectangular or quadrilateral) with a distinctive design and colours. It is used as a symbol, a signalling device, or for decoration. The term ''flag'' is also used to refer to the graphic design empl ...
, (vertex, edge, face) can be mapped to any other such flag by a suitable symmetry of the cube. Thus we can define a regular polytope very succinctly: *A regular polytope is one whose symmetry group is transitive on its flags. In the 20th century, some important developments were made. The
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
s of the classical regular polytopes were generalised into what are now called
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refle ...
s. Coxeter groups also include the symmetry groups of regular
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
s of space or of the plane. For example, the symmetry group of an infinite
chessboard A chessboard is a used to play chess. It consists of 64 squares, 8 rows by 8 columns, on which the chess pieces are placed. It is square in shape and uses two colours of squares, one light and one dark, in a chequered pattern. During play, the bo ...
would be the Coxeter group ,4


Apeirotopes — infinite polytopes

In the first part of the 20th century, Coxeter and Petrie discovered three infinite structures , and . They called them regular skew polyhedra, because they seemed to satisfy the definition of a regular polyhedron — all the vertices, edges and faces are alike, all the angles are the same, and the figure has no free edges. Nowadays, they are called infinite polyhedra or apeirohedra. The regular tilings of the plane , and can also be regarded as infinite polyhedra. In the 1960s
Branko Grünbaum Branko Grünbaum ( he, ברנקו גרונבאום; 2 October 1929 – 14 September 2018) was a Croatian-born mathematician of Jewish descentregular apeirotopes, that is, regular polytopes with infinitely many faces. A simple example of a
skew apeirogon In geometry, an infinite skew polygon or skew apeirogon is an infinite 2- polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel ...
would be a zig-zag. It seems to satisfy the definition of a regular polygon — all the edges are the same length, all the angles are the same, and the figure has no loose ends (because they can never be reached). More importantly, perhaps, there are symmetries of the zig-zag that can map any pair of a vertex and attached edge to any other. Since then, other regular apeirogons and higher apeirotopes have continued to be discovered.


Regular complex polytopes

A
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
has a real part, which is the bit we are all familiar with, and an imaginary part, which is a multiple of the square root of minus one. A complex
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
has its x, y, z, etc. coordinates as complex numbers. This effectively doubles the number of dimensions. A polytope constructed in such a unitary space is called a
complex polytope In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A complex polytope may be understood as a colle ...
.


Abstract polytopes

Grünbaum also discovered the 11-cell, a four-dimensional
self-dual In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of is , then the ...
object whose facets are not icosahedra, but are "hemi-icosahedra" — that is, they are the shape one gets if one considers opposite faces of the icosahedra to be actually the ''same'' face . The hemi-icosahedron has only 10 triangular faces, and 6 vertices, unlike the icosahedron, which has 20 and 12. This concept may be easier for the reader to grasp if one considers the relationship of the cube and the hemicube. An ordinary cube has 8 corners, they could be labeled A to H, with A opposite H, B opposite G, and so on. In a hemicube, A and H would be treated as the same corner. So would B and G, and so on. The edge AB would become the same edge as GH, and the face ABEF would become the same face as CDGH. The new shape has only three faces, 6 edges and 4 corners. The 11-cell cannot be formed with regular geometry in flat (Euclidean) hyperspace, but only in positively curved (elliptic) hyperspace. A few years after Grünbaum's discovery of the 11-cell,
H. S. M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
independently discovered the same shape. He had earlier discovered a similar polytope, the 57-cell (Coxeter 1982, 1984). By 1994 Grünbaum was considering polytopes abstractly as combinatorial sets of points or vertices, and was unconcerned whether faces were planar. As he and others refined these ideas, such sets came to be called abstract polytopes. An abstract polytope is defined as a partially ordered set (poset), whose elements are the polytope's faces (vertices, edges, faces etc.) ordered by ''containment''. Certain restrictions are imposed on the set that are similar to properties satisfied by the classical regular polytopes (including the Platonic solids). The restrictions, however, are loose enough that regular tessellations, hemicubes, and even objects as strange as the 11-cell or stranger, are all examples of regular polytopes. A geometric polytope is understood to be a ''realization'' of the abstract polytope, such that there is a one-to-one mapping from the abstract elements to the geometric. Thus, any geometric polytope may be described by the appropriate abstract poset, though not all abstract polytopes have proper geometric realizations. The theory has since been further developed, largely by , but other researchers have also made contributions.


Regularity of abstract polytopes

Regularity has a related, though different meaning for abstract polytopes, since angles and lengths of edges have no meaning. The definition of regularity in terms of the transitivity of flags as given in the introduction applies to abstract polytopes. Any classical regular polytope has an abstract equivalent which is regular, obtained by taking the set of faces. But non-regular classical polytopes can have regular abstract equivalents, since abstract polytopes don't care about angles and edge lengths, for example. And a regular abstract polytope may not be realisable as a classical polytope. ''All polygons'' are regular in the abstract world, for example, whereas only those having equal angles and edges of equal length are regular in the classical world.


Vertex figure of abstract polytopes

The concept of ''vertex figure'' is also defined differently for an abstract polytope. The vertex figure of a given abstract ''n''-polytope at a given vertex ''V'' is the set of all abstract faces which contain ''V'', including ''V'' itself. More formally, it is the abstract section : ''F''''n'' / ''V'' = where ''F''''n'' is the maximal face, i.e. the notional ''n''-face which contains all other faces. Note that each ''i''-face, ''i'' ≥ 0 of the original polytope becomes an (''i'' − 1)-face of the vertex figure. Unlike the case for Euclidean polytopes, an abstract polytope with regular facets and vertex figures ''may or may not'' be regular itself – for example, the square pyramid, all of whose facets and vertex figures are regular abstract polygons. The classical vertex figure will, however, be a realisation of the abstract one.


Constructions


Polygons

The traditional way to construct a regular polygon, or indeed any other figure on the plane, is by
compass and straightedge In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
. Constructing some regular polygons in this way is very simple (the easiest is perhaps the equilateral triangle), some are more complex, and some are impossible ("not constructible"). The simplest few regular polygons that are impossible to construct are the ''n''-sided polygons with ''n'' equal to 7, 9, 11, 13, 14, 18, 19, 21,... Constructibility in this sense refers only to ideal constructions with ideal tools. Of course reasonably accurate approximations can be constructed by a range of methods; while theoretically possible constructions may be impractical.


Polyhedra

Euclid's ''Elements'' gave what amount to ruler-and-compass constructions for the five Platonic solids. However, the merely practical question of how one might draw a straight line in space, even with a ruler, might lead one to question what exactly it means to "construct" a regular polyhedron. (One could ask the same question about the polygons, of course.) The English word "construct" has the connotation of systematically building the thing constructed. The most common way presented to construct a regular polyhedron is via a fold-out net. To obtain a fold-out net of a polyhedron, one takes the surface of the polyhedron and cuts it along just enough edges so that the surface may be laid out flat. This gives a plan for the net of the unfolded polyhedron. Since the Platonic solids have only triangles, squares and pentagons for faces, and these are all constructible with a ruler and compass, there exist ruler-and-compass methods for drawing these fold-out nets. The same applies to star polyhedra, although here we must be careful to make the net for only the visible outer surface. If this net is drawn on cardboard, or similar foldable material (for example, sheet metal), the net may be cut out, folded along the uncut edges, joined along the appropriate cut edges, and so forming the polyhedron for which the net was designed. For a given polyhedron there may be many fold-out nets. For example, there are 11 for the cube, and over 900000 for the dodecahedron. Numerous children's toys, generally aimed at the teen or pre-teen age bracket, allow experimentation with regular polygons and polyhedra. For example, klikko provides sets of plastic triangles, squares, pentagons and hexagons that can be joined edge-to-edge in a large number of different ways. A child playing with such a toy could re-discover the Platonic solids (or the
Archimedean solid In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are compose ...
s), especially if given a little guidance from a knowledgeable adult. In theory, almost any material may be used to construct regular polyhedra. They may be carved out of wood, modeled out of wire, formed from stained glass. The imagination is the limit.


Higher dimensions

In higher dimensions, it becomes harder to say what one means by "constructing" the objects. Clearly, in a 3-dimensional universe, it is impossible to build a physical model of an object having 4 or more dimensions. There are several approaches normally taken to overcome this matter. The first approach, suitable for four dimensions, uses four-dimensional stereography. Depth in a third dimension is represented with horizontal relative displacement, depth in a fourth dimension with vertical relative displacement between the left and right images of the stereograph. The second approach is to embed the higher-dimensional objects in three-dimensional space, using methods analogous to the ways in which three-dimensional objects are drawn on the plane. For example, the fold out nets mentioned in the previous section have higher-dimensional equivalents. One might even imagine building a model of this fold-out net, as one draws a polyhedron's fold-out net on a piece of paper. Sadly, we could never do the necessary folding of the 3-dimensional structure to obtain the 4-dimensional polytope because of the constraints of the physical universe. Another way to "draw" the higher-dimensional shapes in 3 dimensions is via some kind of projection, for example, the analogue of either orthographic or perspective projection. Coxeter's famous book on polytopes has some examples of such orthographic projections.Other examples may be found on the web (see for exampl

.
Note that immersing even 4-dimensional polychora directly into two dimensions is quite confusing. Easier to understand are 3-d models of the projections. Such models are occasionally found in science museums or mathematics departments of universities (such as that of the Université Libre de Bruxelles). The intersection of a four (or higher) dimensional regular polytope with a three-dimensional hyperplane will be a polytope (not necessarily regular). If the hyperplane is moved through the shape, the three-dimensional slices can be combined,
animated Animation is a method by which still figures are manipulated to appear as moving images. In traditional animation, images are drawn or painted by hand on transparent celluloid sheets to be photographed and exhibited on film. Today, most ani ...
into a kind of four dimensional object, where the fourth dimension is taken to be time. In this way, we can see (if not fully grasp) the full four-dimensional structure of the four-dimensional regular polytopes, via such cutaway cross sections. This is analogous to the way a CAT scan reassembles two-dimensional images to form a 3-dimensional representation of the organs being scanned. The ideal would be an animated
hologram Holography is a technique that enables a wavefront to be recorded and later re-constructed. Holography is best known as a method of generating real three-dimensional images, but it also has a wide range of other applications. In principle, i ...
of some sort, however, even a simple animation such as the one shown can already give some limited insight into the structure of the polytope. Another way a three-dimensional viewer can comprehend the structure of a four-dimensional polytope is through being "immersed" in the object, perhaps via some form of
virtual reality Virtual reality (VR) is a simulated experience that employs pose tracking and 3D near-eye displays to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment (particularly video games), edu ...
technology. To understand how this might work, imagine what one would see if space were filled with cubes. The viewer would be inside one of the cubes, and would be able to see cubes in front of, behind, above, below, to the left and right of himself. If one could travel in these directions, one could explore the array of cubes, and gain an understanding of its geometrical structure. An infinite array of cubes is not a polytope in the traditional sense. In fact, it is a tessellation of 3-dimensional ( Euclidean) space. However, a 4-polytope can be considered a tessellation of a 3-dimensional non-Euclidean space, namely, a tessellation of the surface of a four-dimensional
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
(a 4-dimensional spherical tiling). Locally, this space seems like the one we are familiar with, and therefore, a virtual-reality system could, in principle, be programmed to allow exploration of these "tessellations", that is, of the 4-dimensional regular polytopes. The mathematics department at
UIUC The University of Illinois Urbana-Champaign (U of I, Illinois, University of Illinois, or UIUC) is a public land-grant research university in Illinois in the twin cities of Champaign and Urbana. It is the flagship institution of the Uni ...
has a number of pictures of what one would see if embedded in a
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
of
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
with dodecahedra. Such a tessellation forms an example of an infinite abstract regular polytope. Normally, for abstract regular polytopes, a mathematician considers that the object is "constructed" if the structure of its
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
is known. This is because of an important theorem in the study of abstract regular polytopes, providing a technique that allows the abstract regular polytope to be constructed from its symmetry group in a standard and straightforward manner.


Regular polytopes in nature

For examples of polygons in nature, see: Each of the Platonic solids occurs naturally in one form or another:


See also

*
List of regular polytopes This article lists the regular polytopes and regular polytope compounds in Euclidean, spherical and hyperbolic spaces. The Schläfli symbol describes every regular tessellation of an ''n''-sphere, Euclidean and hyperbolic spaces. A Schläfli ...
*
Johnson solid In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnso ...
*
Bartel Leendert van der Waerden Bartel Leendert van der Waerden (; 2 February 1903 – 12 January 1996) was a Dutch mathematician and historian of mathematics. Biography Education and early career Van der Waerden learned advanced mathematics at the University of Amster ...


References


Notes


Bibliography

* * * * * * * * * * * 3 (1860) pp54–68, 97–108. * * * *


External links


The Atlas of Small Regular Polytopes
- List of abstract regular polytopes. {{Polytopes Polytopes Symmetry Multi-dimensional geometry