HOME

TheInfoList



OR:

Rear-projection television (RPTV) is a type of large-screen
television Television, sometimes shortened to TV, is a telecommunication medium for transmitting moving images and sound. The term can refer to a television set, or the medium of television transmission. Television is a mass medium for advertising, ...
display technology. Until approximately 2006, most of the relatively affordable consumer large screen TVs up to used rear-projection technology. A variation is a video projector, using similar technology, which projects onto a screen. Three types of projection systems are used in projection TVs. CRT rear-projection TVs were the earliest, and while they were the first to exceed 40", they were also bulky and the picture was unclear at close range. Newer technologies include: DLP (reflective micromirror chip), LCD projectors, Laser TV and
LCoS Liquid crystal on silicon (LCoS or LCOS) is a miniaturized reflective active-matrix liquid-crystal display or "microdisplay" using a liquid crystal layer on top of a silicon backplane. It is also referred to as a spatial light modulator. LCoS was ...
. They are capable of
1080p 1080p (1920×1080 progressively displayed pixels; also known as Full HD or FHD, and BT.709) is a set of HDTV high-definition video modes characterized by 1,920 pixels displayed across the screen horizontally and 1,080 pixels down the screen ve ...
resolution, and examples include
Sony , commonly stylized as SONY, is a Japanese multinational conglomerate corporation headquartered in Minato, Tokyo, Japan. As a major technology company, it operates as one of the world's largest manufacturers of consumer and professional ...
's
SXRD SXRD (Silicon X-tal Reflective Display) is Sony's proprietary variant of liquid crystal on silicon, a technology used mainly in projection televisions and video projectors. In the front and rear-projection television market, it competes directly wit ...
(Silicon X-tal Reflective Display),
JVC JVC (short for Japan Victor Company) is a Japanese brand owned by JVCKenwood corporation. Founded in 1927 as the Victor Talking Machine Company of Japan and later as , the company is best known for introducing Japan's first televisions and for ...
's
D-ILA Liquid crystal on silicon (LCoS or LCOS) is a miniaturized reflective active-matrix liquid-crystal display or "microdisplay" using a liquid crystal layer on top of a silicon backplane. It is also referred to as a spatial light modulator. LCoS was ...
(Digital Direct Drive Image Light Amplifier) and MicroDisplay Corporation's Liquid Fidelity.


Background and History


Necessity

Cathode ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms ( oscilloscope), ...
technology was very limited in the early days of television. It relied on conventional glass blowing methods largely unchanged in centuries. Since the tube had to contain a very high vacuum, the glass was under considerable stress, together with the low deflection angle of CRTs of the era, the practical size of CRTs without increasing their depth was limited. The largest practical tube that could be made that was capable of being mounted horizontally in a television cabinet of acceptable depth was around nine inches. Twelve inch tubes could be manufactured, but these were so long that they had to be mounted vertically and viewed via an angled mirror in the top of the cabinet. In 1936, the British government persuaded the
British Broadcasting Corporation #REDIRECT BBC #REDIRECT BBC Here i going to introduce about the best teacher of my life b BALAJI sir. He is the precious gift that I got befor 2yrs . How has helped and thought all the concept and made my success in the 10th board exam. ...
...
to launch a public high definition (for the era) television broadcasting service. The principal driver for the British government's move was to establish cathode ray tube production facilities which it believed would be vital if the anticipated World War 2 was to materialise. The ability to correct the deflection signals for aberrations in tube geometry had not yet been developed, and it was necessary to make tubes that were relatively long compared with their screen size to minimise distortion. However, because the tube face had to be convex to provide resistance to air pressure, this mitigated the problem but only if the apparent deflection centre was more or less at the centre of curvature of the screen. This necessitated a tube that was relatively long for its screen size. The accelerating voltage used for these tubes was very low by later standards and even a twelve inch tube only ran from a 5000 volt supply. The early white phosphors were not as efficient as later offerings and these early televisions had to be watched in subdued lighting.


Solution

In 1937, both
Philips Koninklijke Philips N.V. (), commonly shortened to Philips, is a Dutch multinational conglomerate corporation that was founded in Eindhoven in 1891. Since 1997, it has been mostly headquartered in Amsterdam, though the Benelux headquarters is ...
and HMV put on display at the Radiolympia show in London, television sets that had a screen size of 25 inches based on the same MS11 Philips/Mullard tube.
Philips 1937 projection TV
These had been the subject of an advertising campaign prior to the show which generated much interest. The television back projected the image from a inch tube onto a 25 inch etched celluloid screen sandwiched between two sheets of glass for protection. The tube size was dictated by the fact that it was the largest tube that could be made with a flat screen. It had not been appreciated at this time that a curved screen was optically better if the centre of curvature of the screen was in roughly the same place as the centre of curvature of the mirror. The tube was mounted vertically in the bottom of the cabinet with the screen pointing downward towards a concave mirror which reflected the image upward toward an angled mirror at the top of the cabinet onto the 25 inch screen, The top of the tube mirror box had a Schmidt lens to correct aberrations. Because the picture had to be magnified to illuminate a screen that had about 100 times the area of the picture on the tube face, the image on the tube had to be very bright indeed. To achieve the required brightness, the tube was driven from a 25,000 volt accelerating supply. As betrayed by the tube type number, the phosphor was green which was brighter for a given beam current that the contemporary white phosphors. Unfortunately, both Philips and HMV had to withdraw their sets from exhibition by the afternoon of the first day as the cathode ray tubes had failed in both cases. Customers who had purchased these sets were disappointed to discover that their tubes rarely lasted longer than a few weeks (bearing in mind that there was only one hour of television broadcasting each day). By November 1937, Philips decided that it was more economic to buy the sets back rather than keep replacing tubes under warranty, which were becoming harder to source as the demand outstripped supply.
Philips 1938 projection TV
No information is available as to how HMV handled the problem. By 1938, Philips had substantially overcome the shortcomings of the previous cathode ray tube to produce the Philips/Mullard MS11/1 projection tube.
Mullard MS11/1 data sheet
This new tube was basically similar but had a larger cathode that required more heater power which was able to support a higher beam current. This new tube retained the green phosphor screen of the earlier tube. The television set also had a smaller 21 inch screen which was roughly three quarters of the area of the previous year's model which meant that the tube did not have to be driven so hard. Purchasers of this later model only got to use it for a year or less as television broadcasting was suspended in 1939 for the duration of the Second World War. Both models of the television had a problem in that the high accelerating voltage on the tube meant that it produced substantial X-radiation. This was never given any thought in the 1930s. Fortunately most of this radiation passed through the bottom of the set from the downward pointing tube. In the United States of America television broadcasting became more widespread at the end of the Second World War. Although cathode ray tube technology had improved during the war such that tubes became shorter for their size, as it was now possible to correct distortions, twelve inches was still the practical limit on size. However, it was now possible to mount a twelve inch tube horizontally in an acceptable cabinet size. As a result of these size limitations, rear projection systems became popular as a way of producing television sets with a screen size larger than 12 inches. Using a 3 or 4 inch monochrome CRT driven at a very high accelerating voltage for the size (usually 25,000 volts though RCA did produce a larger five inch tube that required 27,000 volts.), the tube produced the extremely bright picture which was projected via a Schmidt lens and mirror assembly onto a semi translucent screen of typically 22.5 to 30 inches diagonal in size using an optical system practically identical to the earlier Philips system described above. The only change was that RCA used the optically superior convex screen on the tube having figured out that the Schmidt lens did not have to correct for the curvature of the tube face but only the spherical aberration of the mirror. The resultant picture was darker than with a direct view CRT and had to be watched in very subdued lighting. The degree to which the tube was driven meant that the tube had a relatively short life. When British television broadcasting resumed in June 1946, television production was slow to resume mainly due to shortages of materials following the war. As already noted, twelve inches was still the practical upper limit for direct view cathode ray tubes. In response, in 1950, the Philips company via its Mullard subsidiary introduced a new projection tube, the MW6/2.
Mullard MW6/2 data sheet.
Although the basic idea of the tube had not changed, it was smaller at just inches and now featured a convex screen face, taking advantage of the intervening American developments. It was also around four inches shorter and now featured a more efficient white phosphor developed during the war. This tube allowed for a more compact rear projection system. The tube was mounted horizontally and directed toward a concave mirror as before, but this time the reflected image was turned through ninety degrees by a plane mirror with a central hole for the tube. It was then reflected upward through a Schmidt correcting lens before being reflected through a further ninety degrees to strike the screen. This new tube and optical system offered several advantages over the previous system. The set cabinet was able to be smaller. Previously the screen was on top of a substantial piece of furniture but this new system allowed the screen to occupy a similar position as a direct view television's screen in a regular console sized cabinet. The Schmidt was still required to correct the image for spherical aberration from the mirror. The use of an additional plane mirror allowed the deflection coils and the focussing magnets to be positioned behind this mirror out of the light path. Previously they had partially obstructed the image from the concave mirror being somewhat larger than the tube's screen. The optical box that housed the tube was also designed to shield the X-radiation produced by the tube. The optical boxes were produced in three versions for , and inch iagonalscreens. Two further sizes were available for front projection onto 44 or 52 inch screens. The difference was solely the position of the tube's screen relative to the concave mirror and the optical characteristic of the Schmidt lens. This new system provided acceptable pictures that were bright enough when viewed in subdued lighting. However, the bright image in the tube's screen along with it still being driven hard meant that the tube's life was still substantially shorter than contemporary direct view tubes. A rear projection set would require at least one or two replacement tubes during its lifetime. This inconvenience was somewhat offset by the tube's relatively low price compared with the larger direct view versions, partly due to the quantities in which they had to be produced, plus the fact that they were fairly easy to replace. As the 1950s unfolded, there were several major advances in cathode ray tube technology. Pre stressing the bulb of the tube with steel bands around the outside of the screen for implosion protection allowed larger tube diameters to be produced. Improvements in correcting for deflection aberrations on those screens allowed larger deflection angles and consequently shorter tubes for a given screen size. Further: much simpler deflection systems had been developed that could generate the large currents required without consuming the power of earlier circuits. By 1956 the ability to produce near rectangular faced tubes was developed. This was facilitated by the pre stressing, but still required the walls to have a convex shape to withstand the atmospheric pressure. Although 17 inches in size was the largest size at this time, it was large enough to render rear projection technology obsolete for the immediate future. Using the superior white phosphor of the post war period and higher accelerating voltages, televisions were larger and brighter. As television technology developed and picture quality improved, limitations in cathode ray tube sizes became an issue once again. Even though larger screen sizes with short tube lengths were available, there was a revival of interest in rear projection systems to achieve picture sizes that were beyond the capabilities of direct view cathode ray tubes of the time. Modern color rear-projection television had become commercially available in the 1970s, but at that time could not match the image sharpness of a direct-view CRT. Given their already large dimensions, projection TVs sometimes included larger speakers and more powerful built-in audio vs direct view CRTs and especially depth-limited flat panels, as well as basic
surround sound Surround sound is a technique for enriching the fidelity and depth of sound reproduction by using multiple audio channels from speakers that surround the listener (surround channels). Its first application was in movie theaters. Prior to s ...
processing or emulators such as
Sound Retrieval System Sound Retrieval System (SRS) is a patented psychoacoustic 3D audio processing technology originally invented by Arnold Klayman in the early 1980s. The SRS technology applies head-related transfer functions (HRTFs) to create an immersive 3D sound ...
(SRS) by SRS Labs, similar to a sound bar.


Developments

While popular in the early 2000s as an alternative to more expensive LCD and plasma flat panels despite increased bulk, the falling price and improvements to LCDs led to
Sony , commonly stylized as SONY, is a Japanese multinational conglomerate corporation headquartered in Minato, Tokyo, Japan. As a major technology company, it operates as one of the world's largest manufacturers of consumer and professional ...
,
Philips Koninklijke Philips N.V. (), commonly shortened to Philips, is a Dutch multinational conglomerate corporation that was founded in Eindhoven in 1891. Since 1997, it has been mostly headquartered in Amsterdam, though the Benelux headquarters is ...
,
Toshiba , commonly known as Toshiba and stylized as TOSHIBA, is a Japanese multinational conglomerate corporation headquartered in Minato, Tokyo, Japan. Its diversified products and services include power, industrial and social infrastructure systems, ...
and
Hitachi () is a Japanese multinational conglomerate corporation headquartered in Chiyoda, Tokyo, Japan. It is the parent company of the Hitachi Group (''Hitachi Gurūpu'') and had formed part of the Nissan ''zaibatsu'' and later DKB Group and Fuyo G ...
dropping rear-projection TVs from their lineup.
Samsung The Samsung Group (or simply Samsung) ( ko, 삼성 ) is a South Korean multinational manufacturing conglomerate headquartered in Samsung Town, Seoul, South Korea. It comprises numerous affiliated businesses, most of them united under the ...
,
Mitsubishi The is a group of autonomous Japanese multinational companies in a variety of industries. Founded by Yatarō Iwasaki in 1870, the Mitsubishi Group historically descended from the Mitsubishi zaibatsu, a unified company which existed from 1870 ...
, ProScan, RCA,
Panasonic formerly between 1935 and 2008 and the first incarnation of between 2008 and 2022, is a major Japanese multinational conglomerate corporation, headquartered in Kadoma, Osaka. It was founded by Kōnosuke Matsushita in 1918 as a lightbulb ...
and
JVC JVC (short for Japan Victor Company) is a Japanese brand owned by JVCKenwood corporation. Founded in 1927 as the Victor Talking Machine Company of Japan and later as , the company is best known for introducing Japan's first televisions and for ...
exited the market later as LCD televisions became the standard. The bulk of earlier rear-projection TVs meant that they cannot be wall-mounted, and while most consumers of flat-panels do not hang up their sets, the ability to do so is considered a key selling point. On June 6, 2007, Sony did unveil a 70" rear-projection SXRD model ''KDS-Z70XBR5'' that was 40% slimmer than its predecessor and weighed 200 lbs, which was somewhat wall-mountable. However, on December 27, 2007, Sony decided to exit the RPTV market. Mitsubishi began offering their LaserVue line of wall mountable rear-projection TVs in 2009. Early RPTVs were essentially CRT projectors with a mirror to project onto a built-in screen. They were heavy, weighing up to 500 pounds. The first RPTVs to not use CRTs were launched in 2002, using DLP, LCD and LcOS technologies, requiring a UHP lamp. UHP lamps used in projectors and RPTVs require periodic replacement, as they dim with use. The first wall-mountable RPTV was launched in 2003 by RCA. The first DLP 1080p RPTV was launched in 2005 by Mitsubishi. The first RPTV to use LEDs instead of an UHP lamp as its light source was released by Samsung in 2006. RPTVs that used a plasma lamp were released by Panasonic in 2007. The first RPTV to use lasers instead of an UHP lamp or an LED was released by Mitsubishi as the LaserVue in 2008. Samsung exited the market by 2008, leaving Mitsubishi as the sole remaining manufacturer of RPTVs until it stopped in 2012 due to low profit margins and popularity.


Types

A projection television uses a projector to create a small image or video from a video signal and magnify this image onto a viewable screen. The projector uses a bright beam of light and a lens system to project the image to a much larger size. A front-projection television uses a projector that is separate from the screen and the projector is placed in front of the screen. The setup of a rear-projection television is in some ways similar to that of a traditional television. The projector is contained inside the television box and projects the image from behind the screen. The following are different types of projection televisions, which differ based on the type of projector and how the image (before projection) is created: *
CRT projector A CRT projector is a video projector that uses a small, high-brightness cathode ray tube (CRT) as the image generating element. The image is then focused and enlarged onto a screen using a lens kept in front of the CRT face. The first color CRT ...
: Small
cathode ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms ( oscilloscope), ...
s create the image in the same manner that a traditional CRT television does, which is by firing a beam of electrons onto a phosphor-coated screen and then the image is projected to a large screen. This is done to overcome the limit of size of cathode ray tube which is about 40 inches. Normally 3 CRTs are used, one red, one green and one blue, aligned so the colors mix correctly on the projected image. * LCD projector: A lamp transmits light through a small LCD chip made up of individual pixels to create an image. The LCD projector uses mirrors to take the light and create three separate red, green, and blue beams, which are then passed through three separate LCD panels. The liquid crystals are manipulated using electric current to control the amount of light passing through. The lens system takes the three color beams and projects the image. *
Digital Light Processing Digital Light Processing (DLP) is a set of chipsets based on optical micro-electro-mechanical technology that uses a digital micromirror device. It was originally developed in 1987 by Larry Hornbeck of Texas Instruments. While the DLP imagin ...
(DLP)
projector A projector or image projector is an optical device that projects an image (or moving images) onto a surface, commonly a projection screen. Most projectors create an image by shining a light through a small transparent lens, but some newer typ ...
: A DLP projector creates an image using a digital micromirror device (DMD chip), which on its surface contains a large matrix of microscopic mirrors, each corresponding to one pixel in an image. Each mirror can be rotated to reflect light such that the pixel appears bright, or the mirror can be rotated to direct light elsewhere and make the pixel appear dark. The mirror is made of aluminum and is rotated on an axle hinge. There are electrodes on both sides of the hinge controlling the rotation of the mirror using electrostatic attraction. The electrodes are connected to an SRAM cell located under each pixel, and charges from the SRAM cell drive the movement of the mirrors. Color is added to the image-creation process either through a spinning color wheel (used with a single-chip projector) or a three-chip (red, green, blue) projector. The color wheel is placed between the lamp light source and the DMD chip such that the light passing through is colored and then reflected off a mirror to determine the level of darkness. A color wheel consists of a red, green, and blue sector, as well as a fourth sector to either control brightness or include a fourth color. This spinning color wheel in the single-chip arrangement can be replaced by red, green, and blue light-emitting diodes (LED). The three-chip projector uses a prism to split up the light into three beams (red, green, blue), each directed towards its own DMD chip. The outputs of the three DMD chips are recombined and then projected.


Notes


See also

* Silk screen effect * Screen-door effect * DLP * Large screen television technology *
Laser video display Laser color television (laser TV), or laser color video display, is a type of television that utilizes two or more individually modulated optical (laser) rays of different colors to produce a combined spot that is scanned and projected across the ...
(LVD) * Laser phosphor display


References


Further reading

:1. Enlarged Projection of Television Pictures. M Wolf. Philips Tech. Review, Vol. 2 1937, p.249. :2. The Five Aberrations of Lens Systems. A E Conrady. Monthly Not. Roy. Astron. Soc. 79. 60-66. 1918.
:3. Optical Aberrations in Lens and Mirror Systems. W de Groot. Philips Tech. Review. Vol. 9, 1947/48, p.301. :4. Projection Television Receivers. Parts 1, 2, 3, 4 and 5. Philips Tech. Review. Vol. 10 1948/49, pp.69, 97, 125, 307, 364, also p.286. :5. Prisms and Lens Making. Twyman. Pub. Hilger and Watts, 1952. Optical Instruments. Proc. of London Conference, 1950. :6. Manufacture of Correction Plates for Schmidt Optical System. Philips Tech. Review. Vol. 9, No. 12, 1947, p.349. :7. Testing Wide Angle Mirrors. H W Cox. Journal British Astronomical Association, Vol. 56, p.111. :8. B Schmidt. Mitt. Hamb. Sternwarte in Bergedorf. 7, No. 36, 1932. n German {{Authority control Television technology