random-field
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
and
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a random field is a random function over an arbitrary domain (usually a multi-dimensional space such as \mathbb^n). That is, it is a function f(x) that takes on a random value at each point x \in \mathbb^n(or some other domain). It is also sometimes thought of as a synonym for a
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that ap ...
with some restriction on its index set. That is, by modern definitions, a random field is a generalization of a
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that ap ...
where the underlying parameter need no longer be
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
or
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
valued "time" but can instead take values that are multidimensional vectors or points on some
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
.


Formal definition

Given a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
(\Omega, \mathcal, P), an ''X''-valued random field is a collection of ''X''-valued
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s indexed by elements in a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
''T''. That is, a random field ''F'' is a collection : \ where each F_t is an ''X''-valued random variable.


Examples

In its discrete version, a random field is a list of random numbers whose indices are identified with a discrete set of points in a space (for example, n-
dimensional In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
). Suppose there are four random variables, X_1, X_2, X_3, and X_4, located in a 2D grid at (0,0), (0,2), (2,2), and (2,0), respectively. Suppose each random variable can take on the value of -1 or 1, and the probability of each random variable's value depends on its immediately adjacent neighbours. This is a simple example of a discrete random field. More generally, the values each X_i can take on might be defined over a continuous domain. In larger grids, it can also be useful to think of the random field as a "function valued" random variable as described above. In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
the notion is generalized to a random
functional Functional may refer to: * Movements in architecture: ** Functionalism (architecture) ** Form follows function * Functional group, combination of atoms within molecules * Medical conditions without currently visible organic basis: ** Functional sy ...
, one that takes on random value over a space of functions (see
Feynman integral The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional ...
). Several kinds of random fields exist, among them the
Markov random field In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to b ...
(MRF),
Gibbs random field In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. T ...
,
conditional random field Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without consid ...
(CRF), and
Gaussian random field A Gaussian random field (GRF) within statistics, is a random field involving Gaussian probability density functions of the variables. A one-dimensional GRF is also called a Gaussian process. An important special case of a GRF is the Gaussian free ...
. In 1974,
Julian Besag Julian Ernst Besag FRS (26 March 1945 – 6 August 2010) was a British statistician known chiefly for his work in spatial statistics (including its applications to epidemiology, image analysis and agricultural science), and Bayesian inference (i ...
proposed an approximation method relying on the relation between MRFs and Gibbs RFs.


Example properties

An MRF exhibits the
Markov property In probability theory and statistics, the term Markov property refers to the memoryless property of a stochastic process. It is named after the Russian mathematician Andrey Markov. The term strong Markov property is similar to the Markov propert ...
: P(X_i=x_i, X_j=x_j, i\neq j) =P(X_i=x_i, X_j=x_j,j\in\partial_i), \, for each choice of values (x_j)_j. And each \partial_i is the set of neighbors of i. In other words, the probability that a random variable assumes a value depends on its immediate neighboring random variables. The probability of a random variable in an MRF is given by : P(X_i=x_i, \partial_i) = \frac, where the sum (can be an integral) is over the possible values of k. It is sometimes difficult to compute this quantity exactly.


Applications

When used in the
natural sciences Natural science is one of the branches of science concerned with the description, understanding and prediction of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeat ...
, values in a random field are often spatially correlated. For example, adjacent values (i.e. values with adjacent indices) do not differ as much as values that are further apart. This is an example of a
covariance In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the le ...
structure, many different types of which may be modeled in a random field. One example is the
Ising model The Ising model () (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent ...
where sometimes nearest neighbor interactions are only included as a simplification to better understand the model. A common use of random fields is in the generation of computer graphics, particularly those that mimic natural surfaces such as
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
and
earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
. In
neuroscience Neuroscience is the science, scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a Multidisciplinary approach, multidisciplinary science that combines physiology, an ...
, particularly in task-related functional brain imaging studies using
PET A pet, or companion animal, is an animal kept primarily for a person's company or entertainment rather than as a working animal, livestock, or a laboratory animal. Popular pets are often considered to have attractive appearances, intelligence ...
or
fMRI Functional magnetic resonance imaging or functional MRI (fMRI) measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area ...
, statistical analysis of random fields are one common alternative to correction for multiple comparisons to find regions with ''truly'' significant activation. They are also used in
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
applications (see
graphical model A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probabili ...
s).


Tensor-valued random fields

Random fields are of great use in studying natural processes by the
Monte Carlo method Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deter ...
in which the random fields correspond to naturally spatially varying properties. This leads to tensor-valued random fields in which the key role is played by a Statistical Volume Element (SVE); when the SVE becomes sufficiently large, its properties become deterministic and one recovers the representative volume element (RVE) of deterministic continuum physics. The second type of random fields that appear in continuum theories are those of dependent quantities (temperature, displacement, velocity, deformation, rotation, body and surface forces, stress, etc.).


See also

*
Covariance In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the le ...
*
Kriging In statistics, originally in geostatistics, kriging or Kriging, also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging giv ...
*
Variogram In spatial statistics the theoretical variogram 2\gamma(\mathbf_1,\mathbf_2) is a function describing the degree of spatial dependence of a spatial random field or stochastic process Z(\mathbf). The semivariogram \gamma(\mathbf_1,\mathbf_2) is ha ...
*
Resel In image analysis, a resel (from ''res''olution ''el''ement) represents the actual spatial resolution in an image or a volumetric dataset. The number of resels in the image may be lower or equal to the number of pixel/voxels in the image. In an act ...
*
Stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that ap ...
*
Interacting particle system In probability theory, an interacting particle system (IPS) is a stochastic process (X(t))_ on some configuration space \Omega= S^G given by a site space, a countable-infinite graph G and a local state space, a compact metric space S . More ...
*
Stochastic cellular automata Stochastic cellular automata or probabilistic cellular automata (PCA) or random cellular automata or locally interacting Markov chains are an important extension of cellular automaton. Cellular automata are a discrete-time dynamical system of inte ...


References


Further reading

* * * * {{Stochastic processes Spatial processes