HOME

TheInfoList



OR:

A radio galaxy is a
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System ...
with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its
active galactic nucleus An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not prod ...
. They have luminosities up to 1039  W at radio wavelengths between 10 MHz and 100 GHz. The radio emission is due to the synchrotron process. The observed structure in radio emission is determined by the interaction between twin jets and the external medium, modified by the effects of
relativistic beaming Relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of ligh ...
. The host galaxies are almost exclusively large elliptical galaxies. ''Radio-loud'' active galaxies can be detected at large distances, making them valuable tools for observational cosmology. Recently, much work has been done on the effects of these objects on the intergalactic medium, particularly in
galaxy groups and clusters Galaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the grav ...
.
Alcyoneus In Greek mythology, Alcyoneus or Alkyoneus (; Ancient Greek: Ἀλκυονεύς ''Alkuoneus'') was a traditional opponent of the hero Heracles. He was usually considered to be one of the Gigantes ( Giants), the offspring of Gaia born from the bl ...
is a low-excitation radio galaxy, identified as having the largest radio lobes found, with lobed structures spanning 5 megaparsecs (16×106 ly). For comparison, another similarly sized giant radio galaxy is 3C 236, with lobes 15 million light-years across. A giant radio galaxy is a special class of objects characterized by the presence of radio lobes generated by
relativistic jets An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets bec ...
powered by the central galaxy's supermassive black hole. Giant radio galaxies are different from ordinary radio galaxies in that they can extend to much larger scales, reaching upwards to several megaparsecs across, far larger than the diameters of their host galaxies.


Emission processes

The radio emission from radio-loud active galaxies is synchrotron emission, as inferred from its very smooth, broad-band nature and strong polarization. This implies that the radio-emitting plasma contains, at least,
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s with relativistic speeds (
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
s of ~104) and
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s. Since the plasma must be neutral, it must also contain either
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s or
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collide ...
s. There is no way of determining the particle content directly from observations of synchrotron radiation. Moreover, there is no way to determine the energy densities in particles and magnetic fields from observation: the same synchrotron emissivity may be a result of a few electrons and a strong field, or a weak field and many electrons, or something in between. It is possible to determine a minimum energy condition which is the minimum energy density that a region with a given emissivity can have, but for many years there was no particular reason to believe that the true energies were anywhere near the minimum energies. A sister process to the synchrotron radiation is the inverse-Compton process, in which the relativistic electrons interact with ambient photons and Thomson scatter them to high energies. Inverse-Compton emission from radio-loud sources turns out to be particularly important in X-rays, and, because it depends only on the density of electrons, a detection of inverse-Compton scattering allows a somewhat model-dependent estimate of the energy densities in the particles and magnetic fields. This has been used to argue that many powerful sources are actually quite near the minimum-energy condition. Synchrotron radiation is not confined to radio wavelengths: if the radio source can accelerate particles to high enough energies, features that are detected in the radio wavelengths may also be seen in the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
, optical,
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
or even
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
. In the latter case the responsible electrons must have energies in excess of 1
TeV TEV may refer to: * Transient Earth Voltage: a term for voltages appearing on the metal work of switchgear due to internal partial discharges * TeV, or teraelectronvolt or trillion electron volt, a measure of energy * Total Enterprise Value, a ...
in typical magnetic field strengths. Again, polarization and continuum spectrum are used to distinguish the synchrotron radiation from other emission processes. Jets and hotspots are the usual sources of high-frequency synchrotron emission. It is hard to distinguish observationally between the synchrotron and inverse-Compton radiation, making them a subject of ongoing research. Processes, collectively known as particle acceleration, produce populations of relativistic and non-thermal particles that give rise to synchrotron and inverse-Compton radiation. Fermi acceleration is one plausible particle acceleration process in radio-loud active galaxies.


Radio structures

Radio galaxies, and to a lesser extent, radio-loud quasars display a wide range of structures in radio maps. The most common large-scale structures are called ''lobes'': these are double, often fairly symmetrical, roughly ellipsoidal structures placed on either side of the active nucleus. A significant minority of low-luminosity sources exhibit structures usually known as ''plumes'' which are much more elongated. Some radio galaxies show one or two long narrow features known as ''jets'' (the most famous example being the giant galaxy M87 in the Virgo cluster) coming directly from the nucleus and going to the lobes. Since the 1970s, the most widely accepted model has been that the lobes or plumes are powered by ''beams'' of high-energy particles and magnetic field coming from close to the active nucleus. The jets are believed to be the visible manifestations of the beams, and often the term ''jet'' is used to refer both to the observable feature and to the underlying flow. In 1974, radio sources were divided by Fanaroff and Riley into two classes, now known as Fanaroff and Riley Class I (FRI), and Class II (FRII). The distinction was originally made based on the morphology of the large-scale radio emission (the type was determined by the distance between the brightest points in the radio emission): FRI sources were brightest towards the centre, while FRII sources were brightest at the edges. Fanaroff and Riley observed that there was a reasonably sharp divide in
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
between the two classes: FRIs were low-luminosity, FRIIs were high luminosity. With more detailed radio observations, the morphology turns out to reflect the method of energy transport in the radio source. FRI objects typically have bright jets in the centre, while FRIIs have faint jets but bright ''hotspots'' at the ends of the lobes. FRIIs appear to be able to transport energy efficiently to the ends of the lobes, while FRI beams are inefficient in the sense that they radiate a significant amount of their energy away as they travel. In more detail, the FRI/FRII division depends on host-galaxy environment in the sense that the FRI/FRII transition appears at higher luminosities in more massive galaxies. FRI jets are known to be decelerating in the regions in which their radio emission is brightest, and so it seems that the FRI/FRII transition reflects whether a jet/beam can propagate through the host galaxy without being decelerated to sub-relativistic speeds by interaction with the intergalactic medium. From analysis of relativistic beaming effects, the jets of FRII sources are known to remain relativistic (with speeds of at least 0.5c) out to the ends of the lobes. The hotspots that are usually seen in FRII sources are interpreted as being the visible manifestations of
shock Shock may refer to: Common uses Collective noun *Shock, a historic commercial term for a group of 60, see English numerals#Special names * Stook, or shock of grain, stacked sheaves Healthcare * Shock (circulatory), circulatory medical emerge ...
s formed when the fast, and therefore
supersonic Supersonic speed is the speed of an object that exceeds the speed of sound ( Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately . Speeds greater than five times ...
, jet (the speed of sound cannot exceed c/√3) abruptly terminates at the end of the source, and their spectral energy distributions are consistent with this picture. Often multiple hotspots are seen, reflecting either continued outflow after the shock or movement of the jet termination point: the overall hotspot region is sometimes called the hotspot complex. Names are given to several particular types of radio source based on their radio structure: * ''Classical double'' refers to an FRII source with clear hotspots. * ''Wide-angle tail'' normally refers to a source intermediate between standard FRI and FRII structure, with efficient jets and sometimes hotspots, but with plumes rather than lobes, found at or near the centres of clusters. * ''Narrow-angle tail'' or ''Head-tail source'' describes an FRI that appears to be bent by
ram pressure Ram pressure is a pressure exerted on a body moving through a fluid medium, caused by relative bulk motion of the fluid rather than random thermal motion. It causes a drag force to be exerted on the body. Ram pressure is given in tensor form as ...
as it moves through a cluster. * ''Fat doubles'' are sources with diffuse lobes but neither jets nor hotspots. Some such sources may be ''relics'' whose energy supply has been permanently or temporarily turned off.


Life cycles and dynamics

The largest radio galaxies have lobes or plumes extending to megaparsec scales (more in the case of giant radio galaxies like 3C236), implying a timescale for growth of the order of tens to hundreds of millions of years. This means that, except in the case of very small, very young sources, we cannot observe radio source dynamics directly, and so must resort to theory and inferences from large numbers of objects. Clearly, radio sources must start small and grow larger. In the case of sources with lobes, the dynamics are fairly simple: the jets feed the lobes, the pressure of the lobes increases and the lobes expand. How fast they expand depends on the density and pressure of the external medium. The highest-pressure phase of the external medium, and thus the most important phase from the point of view of the dynamics, is the X-ray emitting diffuse hot gas. For a long time, it was assumed that powerful sources would expand supersonically, pushing a
shock Shock may refer to: Common uses Collective noun *Shock, a historic commercial term for a group of 60, see English numerals#Special names * Stook, or shock of grain, stacked sheaves Healthcare * Shock (circulatory), circulatory medical emerge ...
through the external medium. However, X-ray observations show that the internal lobe pressures of powerful FRII sources are often close to the external thermal pressures and not much higher than the external pressures, as would be required for supersonic expansion. The only unambiguously supersonically expanding system known consists of the inner lobes of the low-power radio galaxy Centaurus A which are probably a result of a comparatively recent outburst of the active nucleus.


Host galaxies and environments

These radio sources are almost universally found hosted by elliptical galaxies, though there is one well-documented exception, namely NGC 4151. Some Seyfert galaxies show weak, small radio jets, but they are not radio-luminous enough to be classified as radio-loud. Such information as there is about the host galaxies of radio-loud
quasar A quasar is an extremely luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a mass rangi ...
s and
blazar A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from t ...
s suggests that they are also hosted by elliptical galaxies. There are several possible reasons for this very strong preference for ellipticals. One is that ellipticals generally contain the most massive
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
s, and so are capable of powering the most luminous active galaxies (see
Eddington luminosity The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body (such as a star) can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The stat ...
). Another is that ellipticals generally inhabit richer environments, providing a large-scale intergalactic medium to confine the radio source. It may also be that the larger amounts of cold gas in spiral galaxies in some way disrupts or stifles a forming jet. To date there is no compelling single explanation for the observations.


Unified models

The different types of radio-loud active galaxies are linked by unified models. The key observation that led to the adoption of unified models for powerful radio galaxies and radio-loud quasars was that all quasars appear to be beamed towards us, showing
superluminal motion In astronomy, superluminal motion is the apparently faster-than-light motion seen in some radio galaxies, BL Lac objects, quasars, blazars and recently also in some galactic sources called microquasars. Bursts of energy moving out along the re ...
in the cores and bright jets on the side of the source nearest to us (the ''Laing-Garrington effect'':). If this is the case, there must be a population of objects not beamed towards us, and, since we know the lobes are not affected by beaming, they would appear as radio galaxies, provided that the quasar nucleus is obscured when the source is seen side-on. It is now accepted that at least some powerful radio galaxies have 'hidden' quasars, though it is not clear whether all such radio galaxies would be quasars if viewed from the right angle. In a similar way, low-power radio galaxies are a plausible parent population for
BL Lac object A BL Lacertae object or BL Lac object is a type of active galactic nucleus (AGN) or a galaxy with such an AGN, named after its prototype, BL Lacertae. In contrast to other types of active galactic nuclei, BL Lacs are characterized by rapid and ...
s.


Uses of radio galaxies


Distant sources

Radio galaxies and radio-loud quasars have been widely used, particularly in the 80s and 90s, to find distant galaxies: by selecting based on radio spectrum and then observing the host galaxy it was possible to find objects at high
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in fr ...
at modest cost in telescope time. The problem with this method is that hosts of active galaxies may not be typical of galaxies at their redshift. Similarly, radio galaxies have in the past been used to find distant X-ray emitting clusters, but unbiased selection methods are now preferred. The most distant radio galaxy currently known is TGSS J1530+1049, at a
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in fr ...
of 5.72.


Standard rulers

Some work has been done attempting to use radio galaxies as
standard ruler A standard ruler is an astronomical object for which the actual physical size is known. By measuring its angular size in the sky, one can use simple trigonometry to determine its distance from Earth. In simple terms, this is because objects of a f ...
s to determine cosmological parameters. This method is fraught with difficulty because a radio galaxy's size depends on both its age and its environment. When a model of the radio source is used, though, methods based on radio galaxies can give good agreement with other cosmological observations.


Effects on environment

Whether or not a radio source is expanding supersonically, it must do work against the external medium in expanding, and so it puts energy into heating and lifting the external plasma. The minimum energy stored in the lobes of a powerful radio source might be 1053 J. The lower limit on the work done on the external medium by such a source is several times this. A good deal of the current interest in radio sources focuses on the effect they must have at the centres of clusters at the present day. Equally interesting is their likely effect on structure formation over cosmological time: it is thought that they may provide a feedback mechanism to slow the formation of the most massive objects.


Terminology

Widely used terminology is awkward now that it is generally accepted that quasars and radio galaxies are the same objects (see above). The acronym ''DRAGN'' (for 'Double Radiosource Associated with Galactic Nucleus') was coined by Patrick Leahy in 1993 and is in use. ''Extragalactic radio source'' is common but can lead to confusion, since many other extragalactic objects are detected in radio surveys, notably starburst galaxies. ''Radio-loud active galaxy'' is unambiguous, and so is often used in this article.


See also

*
Relativistic jet An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets bec ...
*
X-shaped radio galaxy X-shaped (or "winged") radio galaxies are a class of extragalactic radio source that exhibit two, low-surface-brightness radio lobes (the "wings") oriented at an angle to the active, or high-surface-brightness, lobes. Both sets of lobes pass symmet ...
* List of spiral DRAGNs *
M–sigma relation The M–sigma (or ''M''–''σ'') relation is an empirical correlation between the stellar velocity dispersion ''σ'' of a galaxy bulge and the mass M of the supermassive black hole at its center. The ''M''–''σ'' relation was first presented ...
* Death Star Galaxy


References


External links


Atlas of DRAGNs
A collection of radio images of the 3CRR catalogue of radio-loud active galaxies.


The on-line 3CRR catalogue of radio sources
{{Authority control Active galaxy types *radio galaxies