HOME

TheInfoList



OR:

量子調和振動子 は、 古典調和振動子量子力学 類似物です。任意の滑らかな ポテンシャル は通常、安定した 平衡点 の近くで 調和ポテンシャル として近似できるため、最も量子力学における重要なモデル系。さらに、これは正確な 解析解法が知られている数少ない量子力学系の1つである。 author=Griffiths, David J. , title=量子力学入門 , エディション=2nd , 出版社=プレンティス・ホール , 年=2004 , isbn=978-0-13-805326-0 , author-link=David Griffiths (物理学者) , URL アクセス = 登録 , url=https://archive.org/details/introductiontoel00grif_0


One-dimensional harmonic oscillator


Hamiltonian and energy eigenstates

粒子の ハミルトニアン は次のとおりです。 \hat H = \frac + \frac k ^2 = \frac + \frac m \omega^2 ^2 \, , ここで、 は粒子の質量、 は力定数、\omega = \sqrt��動子の_[角周波数\hat_は_位置演算子.html" ;"title="��周波数.html" ;"title="��動子の [角周波数">��動子の [角周波数、\hat は 位置演算子">��周波数.html" ;"title="��動子の [角周波数">��動子の [角周波数、\hat は 位置演算子 (座標ベースで によって与えられる)、および \ hat は 運動量演算子 (座標ベースで \hat p = -i \hbar \, \partial / \partial x で与えられる) です。 フックの法則 のように、ハミルトニアンの最初の項は粒子の運動エネルギーを表し、2 番目の項はそのポテンシャル エネルギーを表します。 時間に依存しない シュレーディンガー方程式 を書くことができます。 \hat H \left, \psi \right\rangle = E \left, \psi \right\rangle ~, ここで、 は、時間に依存しない エネルギー レベル または 固有値 を指定する決定される実数を表し、解 は、その準位のエネルギー 固有状態 を示します。 波動関数スペクトル法を使用。解決策のファミリーがあることがわかりました。この基準では、 エルミート関数 \psi_n(x) = \frac \left(\frac\right )^ e^ H_n\left(\sqrt x \right), \qquad n = 0,1,2 ,\lドット. The functions ''Hn'' are the physicists'
Hermite polynomials In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: * signal processing as Hermitian wavelets for wavelet transform analysis * probability, such as the Edgeworth series, as well ...
, H_n(z)=(-1)^n~ e^\frac\left(e^\right). The corresponding energy levels are E_n = \hbar \omega\bigl(n + \tfrac\bigr)=(2 n + 1) \omega~. このエネルギー スペクトルは、3 つの理由で注目に値します。まず、エネルギーが量子化されます。つまり、離散的なエネルギー値 ( の整数プラス半分の倍数) のみが可能です。これは、粒子が閉じ込められているときの量子力学系の一般的な特徴です。第二に、原子の ボーア模型箱の中の粒子とは異なり、これらの離散エネルギー準位は等間隔である。第三に、達成可能な最低エネルギー ( 基底状態 と呼ばれる 状態のエネルギー) は、ポテンシャル井戸の最小値と等しくありませんが、;これは ゼロ点エネルギーと呼ばれます。ゼロ点エネルギーのため、基底状態の振動子の位置と運動量は (古典的な振動子のように) 固定されていませんが、 ハイゼンベルグの不確定性原理に従って、小さな範囲の分散があります。 。 基底状態の確率密度は原点に集中しています。これは、エネルギーがほとんどない状態で予想されるように、粒子がほとんどの時間をポテンシャル井戸の底で過ごすことを意味します。エネルギーが増加すると、確率密度は、状態のエネルギーがポテンシャル エネルギーと一致する古典的な「ターニング ポイント」でピークに達します。 (高度に励起された状態については、以下の説明を参照してください。)これは、粒子が移動している転換点の近くでより多くの時間を費やす (したがって、発見される可能性が高い) 古典的な調和振動子と一致しています。最も遅い。したがって、 対応原理 は満たされます。さらに、 コヒーレント状態 と呼ばれる最小の不確実性を持つ特別な非分散 波束 は、図に示されているように、古典的なオブジェクトと非常によく似て振動します。それらはハミルトニアンの固有状態ではありません。


Ladder operator method

The " ladder operator" method, developed by
Paul Dirac Paul Adrien Maurice Dirac (; 8 August 1902 – 20 October 1984) was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. He was the Lucasian Professor of Mathematics at the Univer ...
, allows extraction of the energy eigenvalues without directly solving the differential equation. It is generalizable to more complicated problems, notably in
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
. Following this approach, we define the operators and its adjoint , \begin a &=\sqrt \left(\hat x + \hat p \right) \\ a^\dagger &=\sqrt \left(\hat x - \hat p \right) \endNote these operators classically are exactly the generators of normalized rotation in the phase space of x and m\frac, ''i.e'' they describe the forwards and backwards evolution in time of a classical harmonic oscillator. These operators lead to the useful representation of \hat and \hat, \begin \hat x &= \sqrt(a^\dagger + a) \\ \hat p &= i\sqrt(a^\dagger - a) ~. \end The operator is not Hermitian, since itself and its adjoint are not equal. The energy eigenstates (also known as
Fock states In quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an impo ...
), when operated on by these ladder operators, give \begin a^\dagger, n\rangle &= \sqrt , n + 1\rangle \\ a, n\rangle &= \sqrt , n - 1\rangle. \end It is then evident that , in essence, appends a single quantum of energy to the oscillator, while removes a quantum. For this reason, they are sometimes referred to as "creation" and "annihilation" operators. From the relations above, we can also define a number operator , which has the following property: \begin N &= a^\dagger a \\ N\left, n \right\rangle &= n\left, n \right\rangle. \end The following
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
s can be easily obtained by substituting the canonical commutation relation, , a^\dagger= 1,\qquad , a^\dagger= a^,\qquad
, a The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
= -a, And the Hamilton operator can be expressed as \hat H = \hbar\omega\left(N + \frac\right), so the eigenstate of is also the eigenstate of energy. The commutation property yields \begin Na^, n\rangle &= \left(a^\dagger N + , a^\daggerright), n\rangle \\ &= \left(a^\dagger N + a^\dagger\right), n\rangle \\ &= (n + 1)a^\dagger, n\rangle, \end and similarly, Na, n\rangle = (n - 1)a , n \rangle. This means that acts on to produce, up to a multiplicative constant, , and acts on to produce . For this reason, is called a annihilation operator ("lowering operator"), and a creation operator ("raising operator"). The two operators together are called ladder operators. In quantum field theory, and are alternatively called "annihilation" and "creation" operators because they destroy and create particles, which correspond to our quanta of energy. Given any energy eigenstate, we can act on it with the lowering operator, , to produce another eigenstate with less energy. By repeated application of the lowering operator, it seems that we can produce energy eigenstates down to . However, since n = \langle n , N , n \rangle = \langle n , a^\dagger a , n \rangle = \Bigl(a , n \rangle \Bigr)^\dagger a , n \rangle \geqslant 0, the smallest eigen-number is 0, and a \left, 0 \right\rangle = 0. In this case, subsequent applications of the lowering operator will just produce zero kets, instead of additional energy eigenstates. Furthermore, we have shown above that \hat H \left, 0\right\rangle = \frac \left, 0\right\rangle Finally, by acting on , 0⟩ with the raising operator and multiplying by suitable normalization factors, we can produce an infinite set of energy eigenstates \left\, such that \hat H \left, n \right\rangle = \hbar\omega \left( n + \frac \right) \left, n \right\rangle, which matches the energy spectrum given in the preceding section. Arbitrary eigenstates can be expressed in terms of , 0⟩, , n\rangle = \frac , 0\rangle.


Analytical questions

前述の分析は代数的であり、上げ演算子と下げ演算子の間の交換関係のみを使用しています。代数分析が完了したら、分析的な問題に取り掛かる必要があります。まず、基底状態、つまり方程式 a\psi_0 = 0 の解を見つける必要があります。位置表現では、これは一次微分方程式です。 \left(x+\frac\frac\right)\psi_0 = 0, その解はガウス分布であることが容易にわかります In the continuum limit, , , while is held fixed. The canonical coordinates devolve to the decoupled momentum modes of a scalar field, \phi_k, whilst the location index (''not the displacement dynamical variable'') becomes the parameter argument of the scalar field, \phi (x,t).


Molecular vibrations

* The vibrations of a diatomic molecule are an example of a two-body version of the quantum harmonic oscillator. In this case, the angular frequency is given by \omega = \sqrt where \mu = \frac is the reduced mass and m_1 and m_2 are the masses of the two atoms. * The
Hooke's atom Hooke's atom, also known as harmonium or hookium, refers to an artificial helium-like atom where the Coulombic electron-nucleus interaction potential is replaced by a harmonic potential. This system is of significance as it is, for certain values ...
is a simple model of the
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
atom using the quantum harmonic oscillator. * Modelling phonons, as discussed above. * A charge q with mass m in a uniform magnetic field \mathbf is an example of a one-dimensional quantum harmonic oscillator: Landau quantization.


See also

*
Quantum pendulum The quantum pendulum is fundamental in understanding hindered internal rotations in chemistry, quantum features of scattering atoms, as well as numerous other quantum phenomena. Though a pendulum not subject to the small-angle approximation has an ...
* Quantum machine *
Gas in a harmonic trap The results of the quantum harmonic oscillator can be used to look at the equilibrium situation for a quantum ideal gas in a harmonic trap, which is a harmonic potential containing a large number of particles that do not interact with each other ...
* Creation and annihilation operators *
Coherent state In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state which has dynamics most closely resembling the oscillatory behavior of a classical h ...
* Morse potential *
Bertrand's theorem In classical mechanics, Bertrand's theorem states that among central-force potentials with bound orbits, there are only two types of central-force (radial) scalar potentials with the property that all bound orbits are also closed orbits. The ...
* Mehler kernel *
Molecular vibration A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 1013 Hz to approximately 1014 H ...


References


External links


Quantum Harmonic Oscillator Live 3D intensity plots of quantum harmonic oscillatorDriven and damped quantum harmonic oscillator (lecture notes of course "quantum optics in electric circuits")
{{DEFAULTSORT:Quantum Harmonic Oscillator Quantum models Oscillators