HOME

TheInfoList



OR:

The plastid (Greek: πλαστός; plastós: formed, molded – plural plastids) is a
membrane-bound organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
found in the
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
s of
plants Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclude ...
,
algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthesis, photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from u ...
, and some other eukaryotic organisms. They are considered to be intracellular
endosymbiotic An ''endosymbiont'' or ''endobiont'' is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον ''endon'' "within" ...
cyanobacteria. Examples include
chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
s (used for photosynthesis),
chromoplast Chromoplasts are plastids, heterogeneous organelles responsible for pigment synthesis and storage in specific photosynthetic eukaryotes. It is thought that like all other plastids including chloroplasts and leucoplasts they are descended from sym ...
s (used for pigment synthesis and storage), and leucoplasts (non-pigmented plastids that can sometimes differentiate). The event which led to permanent endosymbiosis in the
Archaeplastida The Archaeplastida (or kingdom Plantae ''sensu lato'' "in a broad sense"; pronounced /ɑːrkɪ'plastɪdə/) are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group ...
clade (of
land plants The Embryophyta (), or land plants, are the most familiar group of green plants that comprise vegetation on Earth. Embryophytes () have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of green algae as siste ...
, red algae, and green algae) probably occurred with a
cyanobiont Cyanobionts are cyanobacteria that live in symbiosis with a wide range of organisms such as terrestrial or aquatic plants; as well as, algal and fungal species. They can reside within extracellular or intracellular structures of the host. In order ...
(a symbiotic cyanobacteria) related to the genus '' Gloeomargarita'', around 1.5 billion years ago. A later primary endosymbiosis event occurred in photosynthetic '' Paulinella''
amoeboid An amoeba (; less commonly spelled ameba or amœba; plural ''am(o)ebas'' or ''am(o)ebae'' ), often called an amoeboid, is a type of Cell (biology), cell or unicellular organism with the ability to alter its shape, primarily by extending and ret ...
s about 90–140 million years ago. This plastid belongs to the "PS-clade" (of the cyanobacteria genera ''
Prochlorococcus ''Prochlorococcus'' is a genus of very small (0.6  μm) marine cyanobacteria with an unusual pigmentation ( chlorophyll ''a2'' and ''b2''). These bacteria belong to the photosynthetic picoplankton and are probably the most abundant photosyn ...
'' and ''
Synechococcus ''Synechococcus'' (from the Greek ''synechos'', in succession, and the Greek ''kokkos'', granule) is a unicellular cyanobacterium that is very widespread in the marine environment. Its size varies from 0.8 to 1.5  µm. The photosynthetic c ...
''). Secondary and tertiary endosymbiosis has also occurred, in a wide variety of organisms; additionally, some organisms sequester ingested plastids in a process that is known as
kleptoplasty Kleptoplasty or kleptoplastidy is a symbiotic phenomenon whereby plastids, notably chloroplasts from algae, are sequestered by host organisms. The word is derived from ''Kleptes'' (κλέπτης) which is Greek for thief. The alga is eaten normal ...
. A. F. W. Schimper was the first to name and provide a clear definition of plastids. They often contain pigments used in photosynthesis, and the types of pigments in a plastid determine the cell's color. They are also the site of manufacture and storage of important chemical compounds used by the cells of
autotroph An autotroph or primary producer is an organism that produces complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide,Morris, J. et al. (2019). "Biology: How Life Work ...
ic eukaryotes. They possess a double-stranded DNA molecule that is circular, like that of the
circular chromosome A circular chromosome is a chromosome in bacteria, archaea, mitochondria, and chloroplasts, in the form of a molecule of circular DNA, unlike the linear chromosome of most eukaryotes. Most prokaryote chromosomes contain a circular DNA molecule ...
of
prokaryotic cells A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
. Even in organisms where the plastids have lost their photosynthetic properties, the plastid is kept because of its essential role in the production of molecules like the
isoprenoids The terpenoids, also known as isoprenoids, are a class of naturally occurring organic chemicals derived from the 5-carbon compound isoprene and its derivatives called terpenes, diterpenes, etc. While sometimes used interchangeably with "terpenes" ...
.


In land plants

In
land plants The Embryophyta (), or land plants, are the most familiar group of green plants that comprise vegetation on Earth. Embryophytes () have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of green algae as siste ...
, plastids that contain
chlorophyll Chlorophyll (also chlorophyl) is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words , ("pale green") and , ("leaf"). Chlorophyll allow plants to ...
can carry out photosynthesis and are called chloroplasts. Plastids can also store products like starch and can synthesize fatty acids and
terpenes Terpenes () are a class of natural products consisting of compounds with the formula (C5H8)n for n > 1. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. Terpenes ar ...
, which can be used for producing energy and as raw material for the synthesis of other molecules. For example, the components of the plant cuticle and its
epicuticular wax Epicuticular wax is a coating of wax covering the outer surface of the plant cuticle in land plants. It may form a whitish film or bloom on leaves, fruits and other plant organs. Chemically, it consists of hydrophobic organic compounds, mainly st ...
are synthesized by the epidermal cells from palmitic acid, which is synthesized in the chloroplasts of the
mesophyll tissue A leaf ( : leaves) is any of the principal appendages of a vascular plant stem, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leaves, ste ...
.Kolattukudy, P.E. (1996) "Biosynthetic pathways of cutin and waxes, and their sensitivity to environmental stresses", pp. 83–108 in: ''Plant Cuticles''. G. Kerstiens (ed.), BIOS Scientific publishers Ltd., Oxford All plastids are derived from proplastids, which are present in the meristematic regions of the plant. Proplastids and young chloroplasts commonly divide by
binary fission Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that ta ...
, but more mature chloroplasts also have this capacity. Plant ''proplastids'' (undifferentiated plastids) may differentiate into several forms, depending upon which function they perform in the cell. They may develop into any of the following variants: *
Chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
s: typically green plastids used for photosynthesis. **
Etioplast Etioplasts are an intermediate type of plastid that develop from proplastids that have not been exposed to light, and convert into chloroplasts upon exposure to light. They are usually found in stem and leaf tissue of flowering plants (Angiosperms) ...
s are the precursors of chloroplasts *
Chromoplast Chromoplasts are plastids, heterogeneous organelles responsible for pigment synthesis and storage in specific photosynthetic eukaryotes. It is thought that like all other plastids including chloroplasts and leucoplasts they are descended from sym ...
s: coloured plastids for pigment synthesis and storage * Gerontoplasts: control the dismantling of the photosynthetic apparatus during
plant senescence Plant senescence is the process of aging in plants. Plants have both stress-induced and age-related developmental aging. Chlorophyll degradation during leaf senescence reveals the carotenoids, such as anthocyanin and xanthophylls, which are the c ...
* Leucoplasts: colourless plastids for
monoterpene Monoterpenes are a class of terpenes that consist of two isoprene units and have the molecular formula C10H16. Monoterpenes may be linear (acyclic) or contain rings (monocyclic and bicyclic). Modified terpenes, such as those containing oxygen funct ...
synthesis; leucoplasts sometimes differentiate into more specialized plastids: ** Amyloplasts: for starch storage and detecting gravity (for geotropism) ** Elaioplasts: for storing
fat In nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food. The term often refers specifically to triglycerides (triple est ...
** Proteinoplasts: for storing and modifying protein **
Tannosome Tannosomes are organelles found in plant cells of vascular plants. Formation and functions Tannosomes are formed when the chloroplast membrane forms pockets filled with tannin. Slowly, the pockets break off as tiny vacuoles that carry tannins t ...
s: for synthesizing and producing
tannin Tannins (or tannoids) are a class of astringent, polyphenolic biomolecules that bind to and precipitate proteins and various other organic compounds including amino acids and alkaloids. The term ''tannin'' (from Anglo-Norman ''tanner'', ...
s and polyphenols Depending on their morphology and function, plastids have the ability to differentiate, or redifferentiate, between these and other forms. Each plastid creates multiple copies of a circular 10–250 kilobase
plastome Chloroplast DNA (cpDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid, contain a genome separate from that in the cell nuc ...
. The number of genome copies per plastid is variable, ranging from more than 1000 in rapidly dividing cells, which, in general, contain few plastids, to 100 or fewer in mature cells, where plastid divisions have given rise to a large number of plastids. The plastome contains about 100 genes encoding ribosomal and transfer ribonucleic acids (
rRNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal ...
s and
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino a ...
s) as well as proteins involved in photosynthesis and plastid gene transcription and translation. However, these proteins only represent a small fraction of the total protein set-up necessary to build and maintain the structure and function of a particular type of plastid. Plant
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space *Nuclear ...
genes encode the vast majority of plastid proteins, and the expression of plastid genes and nuclear genes is tightly co-regulated to coordinate proper development of plastids in relation to
cell differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular ...
. Plastid DNA exists as large protein-DNA complexes associated with the inner envelope membrane and called 'plastid nucleoids'. Each nucleoid particle may contain more than 10 copies of the plastid DNA. The proplastid contains a single nucleoid located in the centre of the plastid. The developing plastid has many nucleoids, localized at the periphery of the plastid, bound to the inner envelope membrane. During the development of proplastids to chloroplasts, and when plastids convert from one type to another, nucleoids change in morphology, size and location within the organelle. The remodelling of nucleoids is believed to occur by modifications to the composition and abundance of nucleoid proteins. Many plastids, particularly those responsible for photosynthesis, possess numerous internal membrane layers. In plant cells, long thin protuberances called
stromule A stromule is a microscopic structure found in plant cells. Stromules ( stroma-filled tubules) are highly dynamic structures extending from the surface of all plastid types, including proplastids, chloroplasts, etioplasts, leucoplasts, amyloplasts, ...
s sometimes form and extend from the main plastid body into the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells (intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondrio ...
and interconnect several plastids. Proteins, and presumably smaller molecules, can move within stromules. Most cultured cells that are relatively large compared to other plant cells have very long and abundant stromules that extend to the cell periphery. In 2014, evidence of possible plastid genome loss was found in ''
Rafflesia ''Rafflesia'' () is a genus of parasitic flowering plants in the family Rafflesiaceae. The species have enormous flowers, the buds rising from the ground or directly from the lower stems of their host plants; one species has the largest flowers ...
lagascae'', a non-photosynthetic
parasitic Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson has ...
flowering plant, and in '' Polytomella'', a genus of non-photosynthetic green algae. Extensive searches for plastid genes in both ''Rafflesia'' and ''Polytomella'' yielded no results, however the conclusion that their plastomes are entirely missing is still controversial. Some scientists argue that plastid genome loss is unlikely since even non-photosynthetic plastids contain genes necessary to complete various biosynthetic pathways, such as heme biosynthesis. In spite of the loss of the plastid genome in the Rafflesiaceae, the plastids still occur as "shells" without DNA content. This looks suggestively reminiscent of
hydrogenosome A hydrogenosome is a membrane-enclosed organelle found in some anaerobic ciliates, flagellates, and fungi. Hydrogenosomes are highly variable organelles that have presumably evolved from protomitochondria to produce molecular hydrogen and ATP i ...
s in various organisms.


In algae and protists

Plastid types in
algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthesis, photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from u ...
and
protist A protist () is any eukaryotic organism (that is, an organism whose cells contain a cell nucleus) that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor (the last eukaryotic common ancestor), the exclu ...
s include: *
Chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
s: found in the green algae (plants) and other organisms who derived their ones from the green algae. * Muroplasts: also known as cyanoplasts or cyanelles, the plastids of glaucophyte algae are similar to plant chloroplasts, except that they have a peptidoglycan cell wall that is similar to that of prokaryote. * Rhodoplasts: the red plastids found in red algae, that allow them to photosynthesize to a depth of up to 268 m. The chloroplasts of plants differ from the rhodoplasts in their ability to synthesize starch, which is stored in the form of granules within the plastids. In red algae,
floridean starch Floridean starch is a type of a storage glucan found in glaucophytes and in red algae (or rhodophytes), in which it is usually the primary sink for fixed carbon from photosynthesis. It is found in grains or granules in the cell's cytoplasm and is ...
is synthesized and stored outside the plastids in the cytosol. * Secondary and tertiary plastids: from endosymbiosis of green algae and red algae. * Leucoplast: in
algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthesis, photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from u ...
, the term is used for all unpigmented plastids. Their function differs from the leucoplasts of plants. *
Apicoplast An apicoplast is a derived non-photosynthetic plastid found in most Apicomplexa, including ''Toxoplasma gondii'', and ''Plasmodium falciparum'' and other ''Plasmodium'' spp. (parasites causing malaria), but not in others such as ''Cryptosporidium' ...
: the non-photosynthetic plastids of
Apicomplexa The Apicomplexa (also called Apicomplexia) are a large phylum of parasitic alveolates. Most of them possess a unique form of organelle that comprises a type of non-photosynthetic plastid called an apicoplast, and an apical complex structure. Th ...
derived from secondary endosymbiosis. The plastid of photosynthetic '' Paulinella'' species is often referred to as the 'cyanelle' or chromatophore, and is used in photosynthesis; it had a much more recent endosymbiotic event about 90–140 million years ago, and is the only other known primary endosymbiosis event of cyanobacteria.
Etioplast Etioplasts are an intermediate type of plastid that develop from proplastids that have not been exposed to light, and convert into chloroplasts upon exposure to light. They are usually found in stem and leaf tissue of flowering plants (Angiosperms) ...
s, amyloplasts and
chromoplast Chromoplasts are plastids, heterogeneous organelles responsible for pigment synthesis and storage in specific photosynthetic eukaryotes. It is thought that like all other plastids including chloroplasts and leucoplasts they are descended from sym ...
s are plant-specific and do not occur in algae. Plastids in algae and
hornwort Hornworts are a group of non-vascular Embryophytes (land plants) constituting the division Anthocerotophyta (). The common name refers to the elongated horn-like structure, which is the sporophyte. As in mosses and liverworts, hornworts have a ...
s may also differ from plant plastids in that they contain
pyrenoid Pyrenoids are sub-cellular micro-compartments found in chloroplasts of many algae,Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Bio ...
s.


Inheritance

Most plants inherit the plastids from only one parent. In general,
angiosperms Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (), commonly called angiosperms. The term "angiosperm" is derived from the Greek words ('container, vessel') and ('seed'), and refers to those plants th ...
inherit plastids from the female gamete, whereas many gymnosperms inherit plastids from the male pollen. Algae also inherit plastids from only one parent. The plastid DNA of the other parent is, thus, completely lost. In normal intraspecific crossings (resulting in normal hybrids of one species), the inheritance of plastid DNA appears to be quite strictly 100% uniparental. In interspecific hybridisations, however, the inheritance of plastids appears to be more erratic. Although plastids inherit mainly maternally in interspecific hybridisations, there are many reports of hybrids of flowering plants that contain plastids of the father. Approximately 20% of angiosperms, including
alfalfa Alfalfa () (''Medicago sativa''), also called lucerne, is a perennial flowering plant in the legume family Fabaceae. It is cultivated as an important forage crop in many countries around the world. It is used for grazing, hay, and silage, as we ...
(''Medicago sativa''), normally show biparental inheritance of plastids.


DNA damage and repair

Plastid DNA of maize seedlings is subject to increased damage as the seedlings develop. The DNA is damaged in oxidative environments created by photo-oxidative reactions and photosynthetic/ respiratory electron transfer. Some DNA molecules are repaired while DNA with unrepaired damage appears to be degraded to non-functional fragments. DNA repair proteins are encoded by the cell's nuclear genome but can be translocated to plastids where they maintain genome stability/integrity by repairing the plastid's DNA. As an example, in
chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
s of the moss ''
Physcomitrella patens ''Physcomitrium patens'', (synonym: ''Physcomitrella patens'' ) the spreading earthmoss, is a moss (bryophyte) used as a model organism for studies on plant evolution, development, and physiology. Distribution and ecology ''Physcomitrella p ...
'', a protein employed in DNA mismatch repair (Msh1) interacts with proteins employed in recombinational repair (
RecA RecA is a 38 kilodalton protein essential for the repair and maintenance of DNA. A RecA structural and functional homolog has been found in every species in which one has been seriously sought and serves as an archetype for this class of homolo ...
and RecG) to maintain plastid genome stability.


Origin

Plastids are thought to be
endosymbiotic An ''endosymbiont'' or ''endobiont'' is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον ''endon'' "within" ...
cyanobacteria. The primary endosymbiotic event of the Archaeplastida is hypothesized to have occurred around 1.5 billion years ago and enabled eukaryotes to carry out
oxygenic photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
. Three evolutionary lineages in the Archaeplastida have since emerged in which the plastids are named differently: chloroplasts in green algae and/or plants, rhodoplasts in red algae, and muroplasts in the glaucophytes. The plastids differ both in their pigmentation and in their ultrastructure. For example, chloroplasts in plants and green algae have lost all
phycobilisomes Phycobilisomes are light harvesting antennae of photosystem II in cyanobacteria, red algae and glaucophytes. It was lost in the plastids of green algae / plants (chloroplasts). General structure Phycobilisomes are protein complexes (up to 60 ...
, the
light harvesting complex A light-harvesting complex consists of a number of chromophores which are complex subunit proteins that may be part of a larger super complex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteria ...
es found in cyanobacteria, red algae and glaucophytes, but instead contain stroma and grana thylakoids. The glaucocystophycean plastid—in contrast to chloroplasts and rhodoplasts—is still surrounded by the remains of the cyanobacterial cell wall. All these primary plastids are surrounded by two membranes. The plastid of photosynthetic '' Paulinella'' species is often referred to as the 'cyanelle' or chromatophore, and had a much more recent endosymbiotic event about 90–140 million years ago; it is the only known primary endosymbiosis event of cyanobacteria outside of the Archaeplastida. The plastid belongs to the "PS-clade" (of the cyanobacteria genera ''
Prochlorococcus ''Prochlorococcus'' is a genus of very small (0.6  μm) marine cyanobacteria with an unusual pigmentation ( chlorophyll ''a2'' and ''b2''). These bacteria belong to the photosynthetic picoplankton and are probably the most abundant photosyn ...
'' and ''
Synechococcus ''Synechococcus'' (from the Greek ''synechos'', in succession, and the Greek ''kokkos'', granule) is a unicellular cyanobacterium that is very widespread in the marine environment. Its size varies from 0.8 to 1.5  µm. The photosynthetic c ...
''), which is a different sister clade to the plastids belonging to the Archaeplastida. In contrast to primary plastids derived from primary endosymbiosis of a prokaryoctyic cyanobacteria, complex plastids originated by secondary endosymbiosis in which a eukaryotic organism engulfed another eukaryotic organism that contained a primary plastid. When a eukaryote engulfs a red or a green alga and retains the algal plastid, that plastid is typically surrounded by more than two membranes. In some cases these plastids may be reduced in their metabolic and/or photosynthetic capacity. Algae with complex plastids derived by secondary endosymbiosis of a red alga include the
heterokont Heterokonts are a group of protists (formally referred to as Heterokonta, Heterokontae or Heterokontophyta). The group is a major line of eukaryotes. Most are algae, ranging from the giant multicellular kelp to the unicellular diatoms, which ...
s,
haptophyte The haptophytes, classified either as the Haptophyta, Haptophytina or Prymnesiophyta (named for ''Prymnesium''), are a clade of algae. The names Haptophyceae or Prymnesiophyceae are sometimes used instead. This ending implies classification at t ...
s,
cryptomonads The cryptomonads (or cryptophytes) are a group of algae, most of which have plastids. They are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterio ...
, and most dinoflagellates (= rhodoplasts). Those that endosymbiosed a green alga include the euglenids and
chlorarachniophyte The chlorarachniophytes are a small group of exclusively marine algae widely distributed in tropical and temperate waters. They are typically mixotrophic, ingesting bacteria and smaller protists as well as conducting photosynthesis. Normally t ...
s (= chloroplasts). The
Apicomplexa The Apicomplexa (also called Apicomplexia) are a large phylum of parasitic alveolates. Most of them possess a unique form of organelle that comprises a type of non-photosynthetic plastid called an apicoplast, and an apical complex structure. Th ...
, a phylum of obligate parasitic protozoa including the causative agents of malaria ('' Plasmodium'' spp.), toxoplasmosis ('' Toxoplasma gondii''), and many other human or animal diseases also harbor a complex plastid (although this organelle has been lost in some apicomplexans, such as ''
Cryptosporidium parvum ''Cryptosporidium parvum'' is one of several species that cause cryptosporidiosis, a parasitic disease of the mammalian intestinal tract. Primary symptoms of ''C. parvum'' infection are acute, watery, and nonbloody diarrhea. ''C. parvum'' infect ...
'', which causes
cryptosporidiosis Cryptosporidiosis, sometimes informally called crypto, is a parasitic disease caused by ''Cryptosporidium'', a genus of protozoan parasites in the phylum Apicomplexa. It affects the distal small intestine and can affect the respiratory tract i ...
). The '
apicoplast An apicoplast is a derived non-photosynthetic plastid found in most Apicomplexa, including ''Toxoplasma gondii'', and ''Plasmodium falciparum'' and other ''Plasmodium'' spp. (parasites causing malaria), but not in others such as ''Cryptosporidium' ...
' is no longer capable of photosynthesis, but is an essential organelle, and a promising target for antiparasitic drug development. Some dinoflagellates and sea slugs, in particular of the genus '' Elysia'', take up algae as food and keep the plastid of the digested alga to profit from the photosynthesis; after a while, the plastids are also digested. This process is known as
kleptoplasty Kleptoplasty or kleptoplastidy is a symbiotic phenomenon whereby plastids, notably chloroplasts from algae, are sequestered by host organisms. The word is derived from ''Kleptes'' (κλέπτης) which is Greek for thief. The alga is eaten normal ...
, from the Greek, ''kleptes'', thief.


Plastid development cycle

In 1977 J.M Whatley proposed a plastid development cycle which said that plastid development is not always unidirectional but is instead a complicated cyclic process. Proplastids are the precursor of the more differentiated forms of plastids, as shown in the diagram to the right.


See also

* *


Notes


References


Further reading

* * * * * * *


External links


Transplastomic plants for biocontainment (biological confinement of transgenes)
— Co-extra research project on coexistence and traceability of GM and non-GM supply chains
Tree of Life Eukaryotes
{{Authority control Organelles Plant physiology Photosynthesis Endosymbiotic events