HOME

TheInfoList



OR:

The position of the Sun in the sky is a function of both the
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
and the geographic location of observation on
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
's surface. As Earth orbits the Sun over the course of a
year A year or annus is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the h ...
, the Sun appears to move with respect to the
fixed stars In astronomy, fixed stars ( la, stellae fixae) is a term to name the full set of glowing points, astronomical objects actually and mainly stars, that appear not to move relative to one another against the darkness of the night sky in the backgro ...
on the
celestial sphere In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphe ...
, along a circular path called the ecliptic.
Earth's rotation Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Po ...
about its axis causes diurnal motion, so that the Sun appears to move across the sky in a Sun path that depends on the observer's geographic
latitude In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north ...
. The time when the Sun transits the observer's meridian depends on the geographic
longitude Longitude (, ) is a geographic coordinate that specifies the east– west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek let ...
. To find the Sun's position for a given location at a given time, one may therefore proceed in three steps as follows: # calculate the Sun's position in the ecliptic coordinate system, # convert to the equatorial coordinate system, and # convert to the horizontal coordinate system, for the observer's local time and location. This is the coordinate system normally used to calculate the position of the Sun in terms of
solar zenith angle The solar zenith angle is the zenith angle of the sun, i.e., the angle between the sun’s rays and the vertical direction. It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the ...
and
solar azimuth angle The solar azimuth angle is the azimuth (horizontal angle with respect to north) of the Sun's position. This horizontal coordinate defines the Sun's relative direction along the local horizon, whereas the solar zenith angle (or its complementary a ...
, and the two parameters can be used to depict the Sun path. This calculation is useful in
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
,
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navigation ...
,
surveying Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. A land surveying professional is ...
,
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
,
climatology Climatology (from Greek , ''klima'', "place, zone"; and , '' -logia'') or climate science is the scientific study of Earth's climate, typically defined as weather conditions averaged over a period of at least 30 years. This modern field of stu ...
,
solar energy Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy (including solar water heating), and solar architecture. It is an essen ...
, and
sundial A sundial is a horological device that tells the time of day (referred to as civil time in modern usage) when direct sunlight shines by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a f ...
design.


Approximate position


Ecliptic coordinates

These equations, from the '' Astronomical Almanac'', can be used to calculate the apparent coordinates of the Sun, mean equinox and ecliptic of date, to a precision of about 0°.01 (36″), for dates between 1950 and 2050. These equations are coded into a Fortran 90 routine in Ref.Zhang, T., Stackhouse, P.W., Macpherson, B., and Mikovitz, J.C., 2021. A solar azimuth formula that renders circumstantial treatment unnecessary without compromising mathematical rigor: Mathematical setup, application and extension of a formula based on the subsolar point and atan2 function. ''Renewable Energy'', 172, 1333-1340. DOI: https://doi.org/10.1016/j.renene.2021.03.047 and are used to calculate the
solar zenith angle The solar zenith angle is the zenith angle of the sun, i.e., the angle between the sun’s rays and the vertical direction. It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the ...
and
solar azimuth angle The solar azimuth angle is the azimuth (horizontal angle with respect to north) of the Sun's position. This horizontal coordinate defines the Sun's relative direction along the local horizon, whereas the solar zenith angle (or its complementary a ...
as observed from the surface of the Earth. Start by calculating ''n'', the number of days (positive or negative, including fractional days) since Greenwich noon, Terrestrial Time, on 1 January 2000 ( J2000.0). If the Julian date for the desired time is known, then : n = \mathrm - 2451545.0 The mean longitude of the Sun, corrected for the aberration of light, is: : L = 280.460^\circ + 0.9856474^\circ n The
mean anomaly In celestial mechanics, the mean anomaly is the fraction of an elliptical orbit's period that has elapsed since the orbiting body passed periapsis, expressed as an angle which can be used in calculating the position of that body in the classica ...
of the Sun (actually, of the Earth in its orbit around the Sun, but it is convenient to pretend the Sun orbits the Earth), is: : g = 357.528^\circ + 0.9856003^\circ n Put L and g in the range 0° to 360° by adding or subtracting multiples of 360° as needed. Finally, the ecliptic longitude of the Sun is: : \lambda = L + 1.915^\circ \sin g + 0.020^\circ \sin 2g The ecliptic latitude of the Sun is nearly: : \beta = 0 , as the ecliptic latitude of the Sun never exceeds 0.00033°, and the distance of the Sun from the Earth, in
astronomical unit The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits ...
s, is: : R = 1.00014 - 0.01671 \cos g - 0.00014 \cos 2g .


Obliquity of the ecliptic

Where the
obliquity of the ecliptic In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and or ...
is not obtained elsewhere, it can be approximated: : \epsilon = 23.439^\circ - 0.0000004^\circ n


Equatorial coordinates

\lambda, \beta and R form a complete position of the Sun in the ecliptic coordinate system. This can be converted to the equatorial coordinate system by calculating the
obliquity of the ecliptic In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and or ...
, \epsilon, and continuing:
Right ascension Right ascension (abbreviated RA; symbol ) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the ( hour circle of the) point in question above the earth. When pair ...
, : \alpha = \arctan(\cos \epsilon \tan \lambda), where \alpha is in the same quadrant as \lambda, To get RA at the right quadrant on computer programs use double argument Arctan function such as ATAN2(y,x) : \alpha = \arctan2(\cos \epsilon \sin \lambda , \cos \lambda) and
declination In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of th ...
, : \delta = \arcsin(\sin \epsilon \sin \lambda).


Rectangular equatorial coordinates

Right-handed rectangular equatorial coordinates in
astronomical unit The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits ...
s are: : X = R \cos \lambda : Y = R \cos \epsilon \sin \lambda : Z = R \sin \epsilon \sin \lambda :Where X axis is in the direction of the
March equinox The March equinox or northward equinox is the equinox on the Earth when the subsolar point appears to leave the Southern Hemisphere and cross the celestial equator, heading northward as seen from Earth. The March equinox is known as the ve ...
, the Y axis towards
June Solstice The June solstice is the solstice on Earth that occurs annually between 20 and 22 June according to the Gregorian calendar. In the Northern Hemisphere, the June solstice is the summer solstice (the day with the longest period of daylight), wh ...
, and the Z axis towards the North celestial pole.


Horizontal coordinates


Declination of the Sun as seen from Earth

The Sun appears to move northward during the northern
spring Spring(s) may refer to: Common uses * Spring (season), a season of the year * Spring (device), a mechanical device that stores energy * Spring (hydrology), a natural source of water * Spring (mathematics), a geometric surface in the shape of a h ...
, crossing the celestial equator on the
March equinox The March equinox or northward equinox is the equinox on the Earth when the subsolar point appears to leave the Southern Hemisphere and cross the celestial equator, heading northward as seen from Earth. The March equinox is known as the ve ...
. Its
declination In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of th ...
reaches a maximum equal to the angle of Earth's
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
(23.44°) on the
June solstice The June solstice is the solstice on Earth that occurs annually between 20 and 22 June according to the Gregorian calendar. In the Northern Hemisphere, the June solstice is the summer solstice (the day with the longest period of daylight), wh ...
, then decreases until reaching its minimum (−23.44°) on the
December solstice The December solstice, also known as the southern solstice, is the solstice that occurs each December – typically on 21 December, but may vary by one day in either direction according to the Gregorian calendar. In the Northern Hemisphere, the ...
, when its value is the negative of the axial tilt. This variation produces the
season A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's tilted orbit around the Sun. In temperate and ...
s. A line graph of the Sun's declination during a year resembles a
sine wave A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ...
with an
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
of 23.44°, but one lobe of the wave is several days longer than the other, among other differences. The following phenomena would occur if Earth were a perfect
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
, in a
circular orbit A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. Listed below is a circular orbit in astrodynamics or celestial mechanics under standard assumptions. Here the centripetal force is ...
around the Sun, and if its axis is tilted 90°, so that the axis itself is on the orbital plane (similar to
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus ( Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of ...
). At one date in the year, the Sun would be directly overhead at the
North Pole The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where the Earth's axis of rotation meets its surface. It is called the True North Pole to distinguish from the Ma ...
, so its declination would be +90°. For the next few months, the subsolar point would move toward the
South Pole The South Pole, also known as the Geographic South Pole, Terrestrial South Pole or 90th Parallel South, is one of the two points where Earth's axis of rotation intersects its surface. It is the southernmost point on Earth and lies antipod ...
at constant speed, crossing the
circles of latitude A circle of latitude or line of latitude on Earth is an abstract east– west small circle connecting all locations around Earth (ignoring elevation) at a given latitude coordinate line. Circles of latitude are often called parallels bec ...
at a constant rate, so that the solar declination would decrease ''linearly'' with time. Eventually, the Sun would be directly above the South Pole, with a declination of −90°; then it would start to move northward at a constant speed. Thus, the graph of solar declination, as seen from this highly tilted Earth, would resemble a
triangle wave A triangular wave or triangle wave is a non-sinusoidal waveform named for its triangular shape. It is a periodic, piecewise linear, continuous real function. Like a square wave, the triangle wave contains only odd harmonics. However, ...
rather than a sine wave,
zigzag A zigzag is a pattern made up of small corners at variable angles, though constant within the zigzag, tracing a path between two parallel lines; it can be described as both jagged and fairly regular. In geometry, this pattern is described as ...
ging between plus and minus 90°, with linear segments between the maxima and minima. If the 90° axial tilt is decreased, then the absolute maximum and minimum values of the declination would decrease, to equal the axial tilt. Also, the shapes of the maxima and minima on the graph would become less acute, being curved to resemble the maxima and minima of a sine wave. However, even when the axial tilt equals that of the actual Earth, the maxima and minima remain more acute than those of a sine wave. In reality,
Earth's orbit Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes  days (1 sidereal year), during which time Earth ...
is elliptical. Earth moves more rapidly around the Sun near perihelion, in early January, than near aphelion, in early July. This makes processes like the variation of the solar declination happen faster in January than in July. On the graph, this makes the minima more acute than the maxima. Also, since perihelion and aphelion do not happen on the exact dates as the solstices, the maxima and minima are slightly asymmetrical. The rates of change before and after are not quite equal. The graph of apparent solar declination is therefore different in several ways from a sine wave. Calculating it accurately involves some complexity, as shown below.


Calculations

The declination of the Sun, δ, is the angle between the rays of the Sun and the plane of the Earth's equator. The Earth's
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
(called the ''obliquity of the ecliptic'' by astronomers) is the angle between the Earth's axis and a line perpendicular to the Earth's orbit. The Earth's axial tilt changes slowly over thousands of years but its current value of about ε = 23°26' is nearly constant, so the change in solar declination during one year is nearly the same as during the next year. At the
solstice A solstice is an event that occurs when the Sun appears to reach its most northerly or southerly excursion relative to the celestial equator on the celestial sphere. Two solstices occur annually, around June 21 and December 21. In many count ...
s, the angle between the rays of the Sun and the plane of the Earth's equator reaches its maximum value of 23°26'. Therefore, δ = +23°26' at the northern summer solstice and δ = −23°26' at the southern summer solstice. At the moment of each equinox, the center of the Sun appears to pass through the celestial equator, and δ is 0°. The Sun's declination at any given moment is calculated by: :\delta_\odot = \arcsin \left \sin \left ( -23.44^\circ \right ) \cdot \sin \left ( EL \right ) \right /math> where EL is the ecliptic longitude (essentially, the Earth's position in its orbit). Since the Earth's
orbital eccentricity In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values bet ...
is small, its orbit can be approximated as a circle which causes up to 1° of error. The circle approximation means the EL would be 90° ahead of the solstices in Earth's orbit (at the equinoxes), so that sin(EL) can be written as sin(90+NDS)=cos(NDS) where NDS is the number of days after the December solstice. By also using the approximation that arcsin in(d)·cos(NDS)is close to d·cos(NDS), the following frequently used formula is obtained: :\delta_\odot = - 23.44^\circ \cdot \cos \left \frac \cdot \left ( N + 10 \right ) \right /math> where N is the day of the year beginning with N=0 at midnight
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
(UT) as January 1 begins (i.e. the days part of the
ordinal date An ordinal date is a calendar date typically consisting of a ''year'' and a day of the year or ordinal day number (or simply ordinal day or day number), an ordinal number ranging between 1 and 366 (starting on January 1), though year may sometime ...
−1). The number 10, in (N+10), is the approximate number of days after the December solstice to January 1. This equation overestimates the declination near the September equinox by up to +1.5°. The sine function approximation by itself leads to an error of up to 0.26° and has been discouraged for use in solar energy applications. The 1971 Spencer formula (based on a
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
) is also discouraged for having an error of up to 0.28°. An additional error of up to 0.5° can occur in all equations around the equinoxes if not using a decimal place when selecting N to adjust for the time after UT midnight for the beginning of that day. So the above equation can have up to 2.0° of error, about four times the Sun's angular width, depending on how it is used. The declination can be more accurately calculated by not making the two approximations, using the parameters of the Earth's orbit to more accurately estimate EL: :\delta_\odot = \arcsin \left \sin \left ( -23.44^\circ \right ) \cdot \cos \left ( \frac \left (N + 10 \right ) + \frac \cdot 0.0167 \sin \left ( \frac \left ( N - 2 \right ) \right ) \right ) \right /math> which can be simplified by evaluating constants to: :\delta_\odot = - \arcsin \left 0.39779 \cos \left ( 0.98565^\circ \left (N + 10 \right ) + 1.914^\circ \sin \left ( 0.98565^\circ \left ( N - 2 \right ) \right ) \right ) \right /math> N is the number of days since midnight UT as January 1 begins (i.e. the days part of the
ordinal date An ordinal date is a calendar date typically consisting of a ''year'' and a day of the year or ordinal day number (or simply ordinal day or day number), an ordinal number ranging between 1 and 366 (starting on January 1), though year may sometime ...
−1) and can include decimals to adjust for local times later or earlier in the day. The number 2, in (N-2), is the approximate number of days after January 1 to the Earth's perihelion. The number 0.0167 is the current value of the eccentricity of the Earth's orbit. The eccentricity varies very slowly over time, but for dates fairly close to the present, it can be considered to be constant. The largest errors in this equation are less than ± 0.2°, but are less than ± 0.03° for a given year if the number 10 is adjusted up or down in fractional days as determined by how far the previous year's December solstice occurred before or after noon on December 22. These accuracies are compared to NOAA's advanced calculations which are based on the 1999 Jean Meeus algorithm that is accurate to within 0.01°. (The above formula is related to a reasonably simple and accurate calculation of the Equation of Time, which is described
here Here is an adverb that means "in, on, or at this place". It may also refer to: Software * Here Technologies, a mapping company * Here WeGo (formerly Here Maps), a mobile app and map website by Here Television * Here TV (formerly "here!"), a ...
.) More complicated algorithms correct for changes to the ecliptic longitude by using terms in addition to the 1st-order eccentricity correction above. They also correct the 23.44° obliquity which changes very slightly with time. Corrections may also include the effects of the moon in offsetting the Earth's position from the center of the pair's orbit around the Sun. After obtaining the declination relative to the center of the Earth, a further correction for
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby object ...
is applied, which depends on the observer's distance away from the center of the Earth. This correction is less than 0.0025°. The error in calculating the position of the center of the Sun can be less than 0.00015°. For comparison, the Sun's width is about 0.5°.


Atmospheric refraction

The declination calculations described above do not include the effects of the
refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomen ...
of light in the atmosphere, which causes the apparent angle of elevation of the Sun as seen by an observer to be higher than the actual angle of elevation, especially at low Sun elevations. For example, when the Sun is at an elevation of 10°, it appears to be at 10.1°. The Sun's declination can be used, along with its
right ascension Right ascension (abbreviated RA; symbol ) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the ( hour circle of the) point in question above the earth. When pair ...
, to calculate its azimuth and also its true elevation, which can then be corrected for refraction to give its apparent position.


Equation of time

In addition to the annual north–south oscillation of the Sun's apparent position, corresponding to the variation of its declination described above, there is also a smaller but more complex oscillation in the east–west direction. This is caused by the tilt of the Earth's axis, and also by changes in the speed of its orbital motion around the Sun produced by the elliptical shape of the orbit. The principal effects of this east–west oscillation are variations in the timing of events such as sunrise and sunset, and in the reading of a
sundial A sundial is a horological device that tells the time of day (referred to as civil time in modern usage) when direct sunlight shines by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a f ...
compared with a
clock A clock or a timepiece is a device used to measure and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units such as the day, the lunar month and ...
showing
local mean time Local mean time (LMT) is a form of solar time that corrects the variations of local apparent time, forming a uniform time scale at a specific longitude. This measurement of time was used for everyday use during the 19th century before time zone ...
. As the graph shows, a sundial can be up to about 16 minutes fast or slow, compared with a clock. Since the Earth rotates at a mean speed of one degree every four minutes, relative to the Sun, this 16-minute displacement corresponds to a shift eastward or westward of about four degrees in the apparent position of the Sun, compared with its mean position. A westward shift causes the sundial to be ahead of the clock. Since the main effect of this oscillation concerns time, it is called the ''equation of time'', using the word "equation" in a somewhat archaic sense meaning "correction". The oscillation is measured in units of time, minutes and seconds, corresponding to the amount that a sundial would be ahead of a clock. The equation of time can be positive or negative.


Analemma

An
analemma In astronomy, an analemma (; ) is a diagram showing the position of the Sun in the sky as seen from a fixed location on Earth at the same mean solar time, as that position varies over the course of a year. The diagram will resemble a figur ...
is a diagram that shows the annual variation of the Sun's position on the
celestial sphere In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphe ...
, relative to its mean position, as seen from a fixed location on Earth. (The word ''analemma'' is also occasionally, but rarely, used in other contexts.) It can be considered as an image of the Sun's apparent motion during a
year A year or annus is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the h ...
, which resembles a figure-8. An analemma can be pictured by superimposing photographs taken at the same time of day, a few days apart for a
year A year or annus is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the h ...
. An analemma can also be considered as a graph of the Sun's declination, usually plotted vertically, against the equation of time, plotted horizontally. Usually, the scales are chosen so that equal distances on the diagram represent equal angles in both directions on the celestial sphere. Thus 4 minutes (more precisely 3 minutes, 56 seconds), in the equation of time, are represented by the same distance as 1° in the
declination In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of th ...
, since Earth rotates at a mean speed of 1° every 4 minutes, relative to the Sun. An analemma is drawn as it would be seen in the sky by an observer looking upward. If
north North is one of the four compass points or cardinal directions. It is the opposite of south and is perpendicular to east and west. ''North'' is a noun, adjective, or adverb indicating direction or geography. Etymology The word ''north ...
is shown at the top, then
west West or Occident is one of the four cardinal directions or points of the compass. It is the opposite direction from east and is the direction in which the Sun sets on the Earth. Etymology The word "west" is a Germanic word passed into some ...
is to the ''right''. This is usually done even when the analemma is marked on a geographical globe, on which the continents, etc., are shown with west to the left. Some analemmas are marked to show the position of the Sun on the graph on various dates, a few days apart, throughout the year. This enables the analemma to be used to make simple analog computations of quantities such as the times and
azimuth An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north. Mathematical ...
s of sunrise and
sunset Sunset, also known as sundown, is the daily disappearance of the Sun below the horizon due to Earth's rotation. As viewed from everywhere on Earth (except the North and South poles), the equinox Sun sets due west at the moment of both the spr ...
. Analemmas without date markings are used to correct the time indicated by
sundial A sundial is a horological device that tells the time of day (referred to as civil time in modern usage) when direct sunlight shines by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a f ...
s. Sundial#Noon marks


See also

* Ecliptic *
Effect of Sun angle on climate The amount of heat energy received at any location on the globe is a direct effect of Sun angle on climate, as the angle at which sunlight strikes Earth varies by location, time of day, and season due to Earth's orbit around the Sun and Earth's r ...
* Newcomb's Tables of the Sun *
Solar azimuth angle The solar azimuth angle is the azimuth (horizontal angle with respect to north) of the Sun's position. This horizontal coordinate defines the Sun's relative direction along the local horizon, whereas the solar zenith angle (or its complementary a ...
* Solar elevation angle * Solar irradiance * Solar time * Sun path *
Sunrise equation The sunrise equation or sunset equation can be used to derive the time of sunrise or sunset for any solar declination and latitude in terms of local solar time when sunrise and sunset actually occur. Formulation It is formulated as: :\cos \ ...


References


External links


Solar Position Algorithm
at National Renewable Energy Laboratory'
Renewable Resource Data Center
website.
Sun Position Calculator
a
pveducation.org
An interactive calculator showing the Sun's path in the sky.
NOAA Solar Calculator
at the NOAA Earth System Research Laboratory'
Global Monitoring Division
website.


HORIZONS System
at th
JPL
website. Very accurate positions of Solar System objects based on the JPL DE series ephemerides.
General ephemerides of the solar system bodies
at th
IMCCE
website. Positions of Solar System objects based on the INPOP series ephemerides.

{{Portal bar, Astronomy, Stars, Spaceflight, Outer space, Solar System Sun Dynamics of the Solar System