HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined on functions by applying the operations to function values separately for each point in the
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function ** Natural domain of a partial function **Domain of holomorphy of a function * ...
of definition. Important relations can also be defined pointwise.


Pointwise operations


Formal definition

A binary operation on a set can be lifted pointwise to an operation on the set of all functions from to as follows: Given two functions and , define the function by Commonly, ''o'' and ''O'' are denoted by the same symbol. A similar definition is used for unary operations ''o'', and for operations of other arity.


Examples

\begin (f+g)(x) & = f(x)+g(x) & \text \\ (f\cdot g)(x) & = f(x) \cdot g(x) & \text \\ (\lambda \cdot f)(x) & = \lambda \cdot f(x) & \text \end where f, g : X \to R. See also pointwise product, and scalar. An example of an operation on functions which is ''not'' pointwise is convolution.


Properties

Pointwise operations inherit such properties as associativity, commutativity and distributivity from corresponding operations on the codomain. If A is some algebraic structure, the set of all functions X to the carrier set of A can be turned into an algebraic structure of the same type in an analogous way.


Componentwise operations

Componentwise operations are usually defined on vectors, where vectors are elements of the set K^n for some
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
n and some field K. If we denote the i-th component of any vector v as v_i, then componentwise addition is (u+v)_i = u_i+v_i. Componentwise operations can be defined on matrices. Matrix addition, where (A + B)_ = A_ + B_ is a componentwise operation while matrix multiplication is not. A
tuple In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
can be regarded as a function, and a vector is a tuple. Therefore, any vector v corresponds to the function f:n\to K such that f(i)=v_i, and any componentwise operation on vectors is the pointwise operation on functions corresponding to those vectors.


Pointwise relations

In order theory it is common to define a pointwise
partial order In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
on functions. With ''A'', ''B'' posets, the set of functions ''A'' → ''B'' can be ordered by ''f'' ≤ ''g'' if and only if (∀''x'' ∈ A) ''f''(''x'') ≤ ''g''(''x''). Pointwise orders also inherit some properties of the underlying posets. For instance if A and B are continuous lattices, then so is the set of functions ''A'' → ''B'' with pointwise order. Using the pointwise order on functions one can concisely define other important notions, for instance:Gierz, et al., p. 26 * A '' closure operator'' ''c'' on a poset ''P'' is a
monotone Monotone refers to a sound, for example music or speech, that has a single unvaried tone. See: monophony. Monotone or monotonicity may also refer to: In economics *Monotone preferences, a property of a consumer's preference ordering. *Monotonic ...
and idempotent self-map on ''P'' (i.e. a
projection operator In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it wer ...
) with the additional property that id''A'' ≤ ''c'', where id is the identity function. * Similarly, a projection operator ''k'' is called a '' kernel operator'' if and only if ''k'' ≤ id''A''. An example of an infinitary pointwise relation is pointwise convergence of functions—a sequence of functions (f_n)_^\infty with f_n:X \longrightarrow Y converges pointwise to a function f if for each x in X \lim_ f_n(x) = f(x).


Notes


References

''For order theory examples:'' * T. S. Blyth, ''Lattices and Ordered Algebraic Structures'', Springer, 2005, . * G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott: ''Continuous Lattices and Domains'', Cambridge University Press, 2003. {{PlanetMath attribution, id=7260, title=Pointwise Mathematical terminology