HOME

TheInfoList



OR:

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
that focuses on the relationship between
chemical structure A chemical structure determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid. Molecular geometry refers to the spatial arrangement of ...
s and reactivity, in particular, applying experimental tools of
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistica ...
to the study of
organic molecules In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The s ...
. Specific focal points of study include the
rates Rate or rates may refer to: Finance * Rates (tax), a type of taxation system in the United Kingdom used to fund local government * Exchange rate, rate at which one currency will be exchanged for another Mathematics and science * Rate (mathema ...
of
organic reactions Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions, photochemi ...
, the relative chemical stabilities of the starting materials,
reactive intermediate In chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, s ...
s,
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
s, and products of
chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking ...
s, and non-covalent aspects of
solvation Solvation (or dissolution) describes the interaction of a solvent with dissolved molecules. Both ionized and uncharged molecules interact strongly with a solvent, and the strength and nature of this interaction influence many properties of t ...
and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact
reaction mechanism In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage o ...
and rate for each
organic reaction Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions, photochemical ...
of interest.


Application

Physical organic chemists use theoretical and experimental approaches work to understand these foundational problems in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
, including classical and statistical
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of ...
calculations, quantum mechanical theory and
computational chemistry Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of mo ...
, as well as experimental
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter ...
(e.g., NMR), spectrometry (e.g., MS), and
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics ( condensed matter physics). The wor ...
approaches. The field therefore has applications to a wide variety of more specialized fields, including electro- and
photochemistry Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet ( wavelength from 100 to 400  nm), visible light (400� ...
,
polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
and supramolecular chemistry, and bioorganic chemistry,
enzymology Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. ...
, and
chemical biology Chemical biology is a scientific discipline spanning the fields of chemistry and biology. The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and ...
, as well as to commercial enterprises involving
process chemistry Process chemistry is the arm of pharmaceutical chemistry concerned with the development and optimization of a synthetic scheme and pilot plant procedure to manufacture compounds for the drug development phase. Process chemistry is distinguished fr ...
,
chemical engineering Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials in ...
, materials science and
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
, and
pharmacology Pharmacology is a branch of medicine, biology and pharmaceutical sciences concerned with drug or medication action, where a drug may be defined as any artificial, natural, or endogenous (from within the body) molecule which exerts a biochemica ...
in
drug discovery In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or b ...
by design.


Scope

Physical organic chemistry is the study of the relationship between structure and reactivity of
organic molecules In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The s ...
. More specifically, physical organic chemistry applies the experimental tools of
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistica ...
to the study of the structure of
organic molecules In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The s ...
and provides a theoretical framework that interprets how structure influences both mechanisms and
rates Rate or rates may refer to: Finance * Rates (tax), a type of taxation system in the United Kingdom used to fund local government * Exchange rate, rate at which one currency will be exchanged for another Mathematics and science * Rate (mathema ...
of
organic reactions Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions, photochemi ...
. It can be thought of as a subfield that bridges
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
with
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistica ...
. Physical organic chemists use both experimental and theoretical disciplines such as
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter ...
, spectrometry,
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics ( condensed matter physics). The wor ...
,
computational chemistry Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of mo ...
, and quantum theory to study both the
rates Rate or rates may refer to: Finance * Rates (tax), a type of taxation system in the United Kingdom used to fund local government * Exchange rate, rate at which one currency will be exchanged for another Mathematics and science * Rate (mathema ...
of
organic reactions Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions, photochemi ...
and the relative
chemical stability In chemistry, chemical stability is the thermodynamic stability of a chemical system. Thermodynamic stability occurs when a system is in its lowest energy state, or in chemical equilibrium with its environment. This may be a dynamic equilibri ...
of the starting materials,
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
s, and products. Chemists in this field work to understand the physical underpinnings of modern
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
, and therefore physical organic chemistry has applications in specialized areas including
polymer chemistry Polymer chemistry is a sub-discipline of chemistry that focuses on the structures of chemicals, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry ar ...
, supramolecular chemistry,
electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an out ...
, and
photochemistry Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet ( wavelength from 100 to 400  nm), visible light (400� ...
.


History

The term ''physical organic chemistry'' was itself coined by Louis Hammett in 1940 when he used the phrase as a title for his textbook.


Chemical structure and thermodynamics


Thermochemistry

Organic chemists use the tools of
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws ...
to study the bonding, stability, and energetics of chemical systems. This includes experiments to measure or determine the
enthalpy Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant ...
(ΔH),
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodyna ...
(ΔS), and Gibbs' free energy (ΔG) of a reaction, transformation, or isomerization. Chemists may use various chemical and mathematical analyses, such as a Van 't Hoff plot, to calculate these values. Empirical constants such as bond dissociation energy, standard heat of formation (ΔHf°), and
heat of combustion The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it. The ''calorific value'' is the total energy rele ...
(ΔHc°) are used to predict the stability of molecules and the change in
enthalpy Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant ...
(ΔH) through the course of the reactions. For complex molecules, a ΔHf° value may not be available but can be estimated using molecular fragments with known heats of formation. This type of analysis is often referred to as
Benson group increment theory Benson may refer to: Animals *Benson (fish), largest common carp caught in Britain Places Geography Canada * Rural Municipality of Benson No. 35, Saskatchewan; rural municipality * Benson, Saskatchewan; hamlet United Kingdom * Benson, Oxfordshi ...
, after chemist Sidney Benson who spent a career developing the concept. The thermochemistry of reactive intermediates— carbocations, carbanions, and
radicals Radical may refer to: Politics and ideology Politics *Radical politics, the political intent of fundamental societal change *Radicalism (historical), the Radical Movement that began in late 18th century Britain and spread to continental Europe and ...
—is also of interest to physical organic chemists. Group increment data are available for radical systems. Carbocation and carbanion stabilities can be assessed using hydride ion affinities and pKa values, respectively.


Conformational analysis

One of the primary methods for evaluating chemical stability and energetics is conformational analysis. Physical organic chemists use conformational analysis to evaluate the various types of strain present in a molecule to predict reaction products. Strain can be found in both acyclic and cyclic molecules, manifesting itself in diverse systems as torsional strain, allylic strain,
ring strain In organic chemistry, ring strain is a type of instability that exists when bonds in a molecule form angles that are abnormal. Strain is most commonly discussed for small rings such as cyclopropanes and cyclobutanes, whose internal angles are ...
, and ''syn''-pentane strain. A-values provide a quantitative basis for predicting the conformation of a substituted
cyclohexane Cyclohexane is a cycloalkane with the molecular formula . Cyclohexane is non-polar. Cyclohexane is a colorless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohe ...
, an important class of cyclic organic compounds whose reactivity is strongly guided by conformational effects. The A-value is the difference in the Gibbs' free energy between the axial and equatorial forms of substituted cyclohexane, and by adding together the A-values of various
substituent A substituent is one or a group of atoms that replaces (one or more) atoms, thereby becoming a moiety in the resultant (new) molecule. (In organic chemistry and biochemistry, the terms ''substituent'' and ''functional group'', as well as '' side ...
s it is possible to quantitatively predict the preferred conformation of a cyclohexane derivative. In addition to molecular stability, conformational analysis is used to predict reaction products. One commonly cited example of the use of conformational analysis is a bi-molecular elimination reaction (E2). This reaction proceeds most readily when the nucleophile attacks the species that is antiperiplanar to the leaving group. A
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of find ...
analysis of this phenomenon suggest that this conformation provides the best overlap between the electrons in the R-H σ bonding orbital that is undergoing nucleophilic attack and the empty σ*
antibonding In chemical bonding theory, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more no ...
orbital of the R-X bond that is being broken. By exploiting this effect, conformational analysis can be used to design molecules that possess enhanced reactivity. The physical processes which give rise to bond rotation barriers are complex, and these barriers have been extensively studied through experimental and theoretical methods. A number of recent articles have investigated the predominance of the
steric Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape ( conformation) and reactivity of ions ...
,
electrostatic Electrostatics is a branch of physics that studies electric charges at rest ( static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for ...
, and hyperconjugative contributions to rotational barriers in
ethane Ethane ( , ) is an organic chemical compound with chemical formula . At standard temperature and pressure, ethane is a colorless, odorless gas. Like many hydrocarbons, ethane is isolated on an industrial scale from natural gas and as a petroc ...
,
butane Butane () or ''n''-butane is an alkane with the formula C4H10. Butane is a gas at room temperature and atmospheric pressure. Butane is a highly flammable, colorless, easily liquefied gas that quickly vaporizes at room temperature. The name but ...
, and more substituted molecules.


Non-covalent interactions

Chemists use the study of intramolecular and intermolecular non-covalent bonding/interactions in molecules to evaluate reactivity. Such interactions include, but are not limited to, hydrogen bonding, electrostatic interactions between charged molecules, dipole-dipole interactions, polar-π and cation-π interactions, π-stacking, donor-acceptor chemistry, and halogen bonding. In addition, the hydrophobic effect—the association of organic compounds in water—is an electrostatic,
non-covalent interaction In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The c ...
of interest to chemists. The precise physical origin of the hydrophobic effect originates from many complex interactions, but it is believed to be the most important component of biomolecular recognition in water. For example, Xu and Melcher ''et al.'' elucidated the structural basis for folic acid recognition by folate acid receptor proteins. The strong interaction between
folic acid Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing a ...
and folate receptor was attributed to both
hydrogen bonds In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a l ...
and hydrophobic interactions. The study of non-covalent interactions is also used to study binding and
cooperativity Cooperativity is a phenomenon displayed by systems involving identical or near-identical elements, which act dependently of each other, relative to a hypothetical standard non-interacting system in which the individual elements are acting indepen ...
in supramolecular assemblies and macrocyclic compounds such as crown ethers and cryptands, which can act as hosts to guest molecules.


Acid–base chemistry

The properties of
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a se ...
s and bases are relevant to physical organic chemistry. Organic chemists are primarily concerned with Brønsted–Lowry acids/bases as proton donors/acceptors and Lewis acids/bases as electron acceptors/donors in organic reactions. Chemists use a series of factors developed from physical chemistry -- electronegativity/ Induction, bond strengths,
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscil ...
,
hybridization Hybridization (or hybridisation) may refer to: *Hybridization (biology), the process of combining different varieties of organisms to create a hybrid *Orbital hybridization, in chemistry, the mixing of atomic orbitals into new hybrid orbitals *Nu ...
,
aromaticity In chemistry, aromaticity is a chemical property of cyclic ( ring-shaped), ''typically'' planar (flat) molecular structures with pi bonds in resonance (those containing delocalized electrons) that gives increased stability compared to satur ...
, and
solvation Solvation (or dissolution) describes the interaction of a solvent with dissolved molecules. Both ionized and uncharged molecules interact strongly with a solvent, and the strength and nature of this interaction influence many properties of t ...
—to predict relative acidities and basicities. The hard/soft acid/base principle is utilized to predict molecular interactions and reaction direction. In general, interactions between molecules of the same type are preferred. That is, hard acids will associate with hard bases, and soft acids with soft bases. The concept of hard acids and bases is often exploited in the synthesis of inorganic
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as '' ligands'' or complexing agents. M ...
es.


Kinetics

Physical organic chemists use the mathematical foundation of chemical kinetics to study the rates of reactions and reaction mechanisms. Unlike thermodynamics, which is concerned with the relative stabilities of the products and reactants (ΔG°) and their equilibrium concentrations, the study of kinetics focuses on the free energy of activation (ΔG) -- the difference in free energy between the reactant structure and the transition state structure—of a reaction, and therefore allows a chemist to study the process of equilibration. Mathematically derived formalisms such as the
Hammond Postulate Hammond's postulate (or alternatively the Hammond–Leffler postulate), is a hypothesis in physical organic chemistry which describes the geometric structure of the transition state in an organic chemical reaction. First proposed by George Hammon ...
, the Curtin-Hammett principle, and the theory of microscopic reversibility are often applied to
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
. Chemists have also used the principle of thermodynamic versus kinetic control to influence reaction products.


Rate laws

The study of
chemical kinetics Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is to be contrasted with chemical thermodynamics, which deals with the direction in ...
is used to determine the rate law for a reaction. The rate law provides a quantitative relationship between the rate of a
chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking ...
and the concentrations or pressures of the chemical species present. Note, Amazon rather than Google allows access into this text. Rate laws must be determined by experimental measurement and generally cannot be elucidated from the chemical equation. The experimentally determined rate law refers to the stoichiometry of the transition state structure relative to the ground state structure. Determination of the rate law was historically accomplished by monitoring the concentration of a reactant during a reaction through gravimetric analysis, but today it is almost exclusively done through fast and unambiguous spectroscopic techniques. In most cases, the determination of rate equations is simplified by adding a large excess ("flooding") all but one of the reactants.


Catalysis

The study of
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
and catalytic reactions is very important to the field of physical organic chemistry. A
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
participates in the chemical reaction but is not consumed in the process. A catalyst lowers the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
barrier (ΔG), increasing the rate of a reaction by either stabilizing the transition state structure or destabilizing a key reaction intermediate, and as only a small amount of catalyst is required it can provide economic access to otherwise expensive or difficult to synthesize organic molecules. Catalysts may also influence a reaction rate by changing the mechanism of the reaction.


Kinetic isotope effect

Although a rate law provides the stoichiometry of the
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
structure, it does not provide any information about breaking or forming bonds. The substitution of an isotope near a reactive position often leads to a change in the rate of a reaction. Isotopic substitution changes the potential energy of reaction intermediates and transition states because heavier isotopes form stronger bonds with other atoms. Atomic mass affects the zero-point vibrational state of the associated molecules, shorter and stronger bonds in molecules with heavier isotopes and longer, weaker bonds in molecules with light isotopes. Because vibrational motions will often change during a course of a reaction, due to the making and breaking of bonds, the frequencies will be affected, and the substitution of an isotope can provide insight into the reaction mechanism and rate law.


Substituent effects

The study of how substituents affect the reactivity of a molecule or the rate of reactions is of significant interest to chemists. Substituents can exert an effect through both
steric Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape ( conformation) and reactivity of ions ...
and electronic interactions, the latter of which include
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscil ...
and
inductive effects In chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. It is present in a σ (sigma ...
. The polarizability of molecule can also be affected. Most substituent effects are analyzed through linear free energy relationships (LFERs). The most common of these is the Hammett Plot Analysis. This analysis compares the effect of various substituents on the ionization of
benzoic acid Benzoic acid is a white (or colorless) solid organic compound with the formula , whose structure consists of a benzene ring () with a carboxyl () substituent. It is the simplest aromatic carboxylic acid. The name is derived from gum benzoin ...
with their impact on diverse chemical systems. The parameters of the Hammett plots are sigma (σ) and rho (ρ). The value of σ indicates the acidity of substituted benzoic acid relative to the unsubstituted form. A positive σ value indicates the compound is more acidic, while a negative value indicates that the substituted version is less acidic. The ρ value is a measure of the sensitivity of the reaction to the change in substituent, but only measures inductive effects. Therefore, two new scales were produced that evaluate the stabilization of localized charge through resonance. One is σ+, which concerns substituents that stabilize positive charges via resonance, and the other is σ which is for groups that stabilize negative charges via resonance. Hammett analysis can be used to help elucidate the possible mechanisms of a reaction. For example, if it is predicted that the
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
structure has a build-up of negative charge relative to the ground state structure, then electron-donating groups would be expected to increase the rate of the reaction. Other LFER scales have been developed.
Steric Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape ( conformation) and reactivity of ions ...
and polar effects are analyzed through Taft Parameters. Changing the solvent instead of the reactant can provide insight into changes in charge during the reaction. The Grunwald-Winstein Plot provides quantitative insight into these effects.


Solvent effects

Solvents A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
can have a powerful effect on
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
, stability, and
reaction rate The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per uni ...
. A change in solvent can also allow a chemist to influence the thermodynamic or kinetic control of the reaction. Reactions proceed at different rates in different solvents due to the change in charge distribution during a chemical transformation. Solvent effects may operate on the ground state and/or
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
structures. An example of the effect of solvent on organic reactions is seen in the comparison of SN1 and SN2 reactions.
Solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
can also have a significant effect on the
thermodynamic equilibrium Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In the ...
of a system, for instance as in the case of keto-enol tautomerizations. In non-polar aprotic solvents, the
enol In organic chemistry, alkenols (shortened to enols) are a type of reactive structure or intermediate in organic chemistry that is represented as an alkene ( olefin) with a hydroxyl group attached to one end of the alkene double bond (). T ...
form is strongly favored due to the formation of an intramolecular
hydrogen-bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing ...
, while in
polar Polar may refer to: Geography Polar may refer to: * Geographical pole, either of two fixed points on the surface of a rotating body or planet, at 90 degrees from the equator, based on the axis around which a body rotates *Polar climate, the cli ...
aprotic A polar aprotic solvent is a solvent that lacks an acidic proton and is polar. Such solvents lack hydroxyl and amine groups. In contrast to protic solvents, these solvents do not serve as proton donors in hydrogen bonding In chemistry, a hydro ...
solvents, such as methylene chloride, the
enol In organic chemistry, alkenols (shortened to enols) are a type of reactive structure or intermediate in organic chemistry that is represented as an alkene ( olefin) with a hydroxyl group attached to one end of the alkene double bond (). T ...
form is less favored due to the interaction between the polar solvent and the polar
diketone In organic chemistry, a dicarbonyl is a molecule containing two carbonyl () groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbony ...
. In
protic In chemistry, a protic solvent is a solvent that has a hydrogen atom bound to an oxygen (as in a hydroxyl group ), a nitrogen (as in an amine group or ), or fluoride (as in hydrogen fluoride). In general terms, any solvent that contains a labil ...
solvents, the equilibrium lies towards the keto form as the intramolecular
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a l ...
competes with hydrogen bonds originating from the solvent. A modern example of the study of solvent effects on
chemical equilibrium In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the ...
can be seen in a study of the epimerization of chiral cyclopropylnitrile Grignard reagents. This study reports that the
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
for the ''cis'' to ''trans'' isomerization of the
Grignard reagent A Grignard reagent or Grignard compound is a chemical compound with the general formula , where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride and phenylmagnesium bromide . ...
is much greater—the preference for the ''cis'' form is enhanced—in
THF Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is ma ...
as a reaction solvent, over
diethyl ether Diethyl ether, or simply ether, is an organic compound in the ether class with the formula , sometimes abbreviated as (see Pseudoelement symbols). It is a colourless, highly volatile, sweet-smelling ("ethereal odour"), extremely flammable li ...
. However, the faster rate of '' cis-trans isomerization'' in
THF Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is ma ...
results in a loss of stereochemical purity. This is a case where understanding the effect of solvent on the stability of the molecular configuration of a reagent is important with regard to the selectivity observed in an
asymmetric synthesis Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecu ...
.


Quantum chemistry

Many aspects of the structure-reactivity relationship in organic chemistry can be rationalized through
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscil ...
, electron pushing, induction, the eight electron rule, and s-p
hybridization Hybridization (or hybridisation) may refer to: *Hybridization (biology), the process of combining different varieties of organisms to create a hybrid *Orbital hybridization, in chemistry, the mixing of atomic orbitals into new hybrid orbitals *Nu ...
, but these are only helpful formalisms and do not represent physical reality. Due to these limitations, a true understanding of physical organic chemistry requires a more rigorous approach grounded in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
.
Quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
provides a rigorous theoretical framework capable of predicting the properties of molecules through calculation of a molecule's electronic structure, and it has become a readily available tool in physical organic chemists in the form of popular software packages. The power of quantum chemistry is built on the wave model of the
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
, in which the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
is a very small, positively charged sphere surrounded by a diffuse
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
cloud. Particles are defined by their associated
wavefunction A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
, an equation which contains all information associated with that particle. All information about the system is contained in the wavefunction. This information is extracted from the
wavefunction A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
through the use of mathematical operators. The energy associated with a particular
wavefunction A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
, perhaps the most important information contained in a wavefunction, can be extracted by solving the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
(above, Ψ is the wavefunction, E is the energy, and Ĥ is the Hamiltonian operator) in which an appropriate
Hamiltonian operator Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonia ...
is applied. In the various forms of the Schrödinger equation, the overall size of a particle's probability distribution increases with decreasing particle mass. For this reason, nuclei are of negligible size in relation to much lighter
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
and are treated as point charges in practical applications of quantum chemistry. Due to complex interactions which arise from electron-electron repulsion, algebraic solutions of the Schrödinger equation are only possible for systems with one electron such as the
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
atom, H2+, H32+, etc.; however, from these simple models arise all the familiar atomic (s,p,d,f) and bonding (σ,π) orbitals. In systems with multiple electrons, an overall multielectron wavefunction describes all of their properties at once. Such wavefunctions are generated through the linear addition of single electron wavefunctions to generate an initial guess, which is repeatedly modified until its associated energy is minimized. Thousands of guesses are often required until a satisfactory solution is found, so such calculations are performed by powerful computers. Importantly, the solutions for atoms with multiple electrons give properties such as diameter and electronegativity which closely mirror experimental data and the patterns found in the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
. The solutions for molecules, such as
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
, provide exact representations of their electronic structure which are unobtainable by experimental methods. Instead of four discrete σ-bonds from carbon to each hydrogen atom, theory predicts a set of four bonding molecular orbitals which are delocalized across the entire molecule. Similarly, the true electronic structure of
1,3-butadiene 1,3-Butadiene () is the organic compound with the formula (CH2=CH)2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a precursor to synthetic rubber. The molecule can be viewed as the union of two v ...
shows delocalized π-bonding molecular orbitals stretching through the entire molecule rather than two isolated double bonds as predicted by a simple
Lewis structure Lewis structures, also known as Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDS), are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons ...
. A complete electronic structure offers great predictive power for organic transformations and dynamics, especially in cases concerning aromatic molecules, extended π systems, bonds between metal ions and organic molecules, molecules containing nonstandard
heteroatoms In chemistry, a heteroatom () is, strictly, any atom that is not carbon or hydrogen. Organic chemistry In practice, the term is usually used more specifically to indicate that non-carbon atoms have replaced carbon in the backbone of the molecula ...
like
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
and
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the '' boron group'' it has t ...
, and the conformational dynamics of large molecules such as
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
wherein the many approximations in chemical formalisms make structure and reactivity prediction impossible. An example of how electronic structure determination is a useful tool for the physical organic chemist is the metal-catalyzed dearomatization of
benzene Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms ...
. Chromium tricarbonyl is highly
electrophilic In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively charged, have an atom that carr ...
due to the withdrawal of electron density from filled
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hard ...
d-orbitals into
antibonding In chemical bonding theory, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more no ...
CO orbitals, and is able to covalently bond to the face of a benzene molecule through delocalized molecular orbitals. The CO
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
inductively draw electron density from benzene through the
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hard ...
atom, and dramatically activate benzene to nucleophilic attack. Nucleophiles are then able to react to make hexacyclodienes, which can be used in further transformations such as Diels Alder cycloadditons. Quantum chemistry can also provide insight into the mechanism of an organic transformation without the collection of any experimental data. Because wavefunctions provide the total energy of a given molecular state, guessed molecular geometries can be optimized to give relaxed molecular structures very similar to those found through experimental methods. Reaction coordinates can then be simulated, and
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
structures solved. Solving a complete energy surface for a given reaction is therefore possible, and such calculations have been applied to many problems in organic chemistry where kinetic data is unavailable or difficult to acquire.


Spectroscopy, spectrometry, and crystallography

Physical organic chemistry often entails the identification of molecular structure, dynamics, and the concentration of reactants in the course of a reaction. The interaction of molecules with light can afford a wealth of data about such properties through nondestructive spectroscopic experiments, with
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
absorbed when the energy of a photon matches the difference in energy between two states in a molecule and emitted when an excited state in a molecule collapses to a lower energy state. Spectroscopic techniques are broadly classified by the type of excitation being probed, such as vibrational, rotational, electronic, nuclear magnetic resonance (NMR), and
electron paramagnetic resonance Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spin ...
spectroscopy. In addition to spectroscopic data, structure determination is often aided by complementary data collected from
X-Ray diffraction X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
and mass spectrometric experiments.


NMR and EPR spectroscopy

One of the most powerful tools in physical organic chemistry is
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic fi ...
. An external
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
applied to a paramagnetic nucleus generates two discrete states, with positive and negative
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
values diverging in
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
; the difference in energy can then be probed by determining the frequency of light needed to excite a change in spin state for a given magnetic field. Nuclei that are not indistinguishable in a given molecule absorb at different frequencies, and the integrated peak area in an NMR spectrum is proportional to the number of nuclei responding to that frequency. It is possible to quantify the relative concentration of different organic molecules simply by integration peaks in the spectrum, and many kinetic experiments can be easily and quickly performed by following the progress of a reaction within one NMR sample. Proton NMR is often used by the synthetic organic chemist because protons associated with certain functional groups give characteristic absorption energies, but NMR spectroscopy can also be performed on
isotopes Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass numbers ...
of
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
,
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
,
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactiv ...
,
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ea ...
,
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the '' boron group'' it has t ...
, and a host of other elements. In addition to simple absorption experiments, it is also possible to determine the rate of fast atom exchange reactions through suppression exchange measurements, interatomic distances through multidimensional nuclear overhauser effect experiments, and through-bond spin-spin coupling through homonuclear correlation spectroscopy. In addition to the spin excitation properties of nuclei, it is also possible to study the properties of organic
radicals Radical may refer to: Politics and ideology Politics *Radical politics, the political intent of fundamental societal change *Radicalism (historical), the Radical Movement that began in late 18th century Britain and spread to continental Europe and ...
through the same fundamental technique. Unpaired electrons also have a net
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
, and an external magnetic field allows for the extraction of similar information through
electron paramagnetic resonance Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spin ...
(EPR) spectroscopy.


Vibrational spectroscopy

Vibrational spectroscopy, or infrared (IR) spectroscopy, allows for the identification of functional groups and, due to its low expense and robustness, is often used in teaching labs and the real-time monitoring of reaction progress in difficult to reach environments (high pressure, high temperature, gas phase, phase boundaries).
Molecular vibrations A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 1013 Hz to approximately 1014 ...
are quantized in an analogous manner to electronic wavefunctions, with integer increases in frequency leading to higher energy states. The difference in energy between vibrational states is nearly constant, often falling in the energy range corresponding to infrared photons, because at normal temperatures molecular vibrations closely resemble harmonic oscillators. It allows for the crude identification of functional groups in
organic molecules In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The s ...
, but spectra are complicated by vibrational coupling between nearby functional groups in complex molecules. Therefore, its utility in structure determination is usually limited to simple molecules. Further complicating matters is that some vibrations do not induce a change in the
molecular dipole moment In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways: *An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system ...
and will not be observable with standard IR absorption spectroscopy. These can instead be probed through
Raman spectroscopy Raman spectroscopy () (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman ...
, but this technique requires a more elaborate apparatus and is less commonly performed. However, as Raman spectroscopy relies on light scattering it can be performed on microscopic samples such as the surface of a
heterogeneous catalyst In chemistry, heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. ...
, a
phase boundary Phase or phases may refer to: Science * State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematic ...
, or on a one microliter (µL) subsample within a larger liquid volume. The applications of vibrational spectroscopy are often used by astronomers to study the composition of molecular gas clouds, extrasolar planetary atmospheres, and planetary surfaces.


Electronic excitation spectroscopy

Electronic excitation spectroscopy, or ultraviolet-visible (UV-vis) spectroscopy, is performed in the visible and
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
regions of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
and is useful for probing the difference in energy between the highest energy occupied (HOMO) and lowest energy unoccupied (LUMO)
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of find ...
s. This information is useful to physical organic chemists in the design of organic photochemical systems and
dye A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution and ...
s, as absorption of different wavelengths of
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
give
organic molecules In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The s ...
color. A detailed understanding of an electronic structure is therefore helpful in explaining electronic excitations, and through careful control of molecular structure it is possible to tune the HOMO-LUMO gap to give desired colors and excited state properties.


Mass spectrometry

Mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
is a technique which allows for the measurement of
molecular mass The molecular mass (''m'') is the mass of a given molecule: it is measured in daltons (Da or u). Different molecules of the same compound may have different molecular masses because they contain different isotopes of an element. The related quant ...
and offers complementary data to spectroscopic techniques for structural identification. In a typical experiment a gas phase sample of an organic material is ionized and the resulting ionic species are accelerated by an applied
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
into a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. The deflection imparted by the magnetic field, often combined with the time it takes for the molecule to reach a detector, is then used to calculate the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
of the molecule. Often in the course of sample
ionization Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecul ...
large molecules break apart, and the resulting data show a parent mass and a number of smaller fragment masses; such fragmentation can give rich insight into the sequence of proteins and nucleic acid polymers. In addition to the mass of a molecule and its fragments, the distribution of isotopic variant masses can also be determined and the qualitative presence of certain elements identified due to their characteristic natural isotope distribution. The ratio of fragment mass population to the parent ion population can be compared against a library of empirical fragmentation data and matched to a known molecular structure. Combined gas chromatography and mass spectrometry is used to qualitatively identify molecules and quantitatively measure concentration with great precision and accuracy, and is widely used to test for small quantities of biomolecules and illicit narcotics in blood samples. For synthetic organic chemists it is a useful tool for the characterization of new compounds and reaction products.


Crystallography

Unlike spectroscopic methods,
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
always allows for unambiguous structure determination and provides precise bond angles and lengths totally unavailable through spectroscopy. It is often used in physical organic chemistry to provide an absolute molecular configuration and is an important tool in improving the synthesis of a pure enantiomeric substance. It is also the only way to identify the position and bonding of elements that lack an NMR active
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
such as
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
. Indeed, before x-ray structural determination methods were made available in the early 20th century all organic structures were entirely conjectural: tetrahedral
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
, for example, was only confirmed by the
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pattern ...
of
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, b ...
, and the delocalized structure of benzene was confirmed by the
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pattern ...
of hexamethylbenzene. While
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics ( condensed matter physics). The wor ...
provides organic chemists with highly satisfying data, it is not an everyday technique in organic chemistry because a perfect single crystal of a target compound must be grown. Only complex molecules, for which NMR data cannot be unambiguously interpreted, require this technique. In the example below, the structure of the host–guest complex would have been quite difficult to solve without a single crystal structure: there are no protons on the
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
, and with no covalent bonds between the two halves of the organic complex spectroscopy alone was unable to prove the hypothesized structure.


See also

* '' Journal of Physical Organic Chemistry''
Gaussian, an example of a commercially available quantum mechanical software package used. particularly, in academic settings


References


Further reading


General

* Peter Atkins & Julio de Paula, 2006, "Physical chemistry," 8th Edn., New York, NY, USA:Macmillan, , se

accessed 21 June 2015. .g., see p. 422 for a group theoretical/symmetry description of atomic orbitals contributing to bonding in methane, CH4, and pp. 390f for estimation of π-electron binding energy for
1,3-butadiene 1,3-Butadiene () is the organic compound with the formula (CH2=CH)2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a precursor to synthetic rubber. The molecule can be viewed as the union of two v ...
by the Hückel method.] * Thomas H. Lowry & Kathleen Schueller Richardson, 1987, ''Mechanism and Theory in Organic Chemistry,'' 3rd Edn., New York, NY, USA:Harper & Row, , se

accessed 20 June 2015. [The authoritative textbook on the subject, containing a number of appendices that provide technical details on molecular orbital theory, kinetic isotope effects, transition state theory, and radical chemistry.] * Eric V. Anslyn & Dennis A. Dougherty, 2006, ''Modern Physical Organic Chemistry'', Sausalito, Calif.: University Science Books, . [A modernized and streamlined treatment with an emphasis on applications and cross-disciplinary connections.] *Michael B. Smith & Jerry March, 2007, "March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure," 6th Ed., New York, NY, USA:Wiley & Sons, , se

accessed 19 June 2015. * Francis A. Carey & Richard J. Sundberg, 2006, "Advanced Organic Chemistry: Part A: Structure and Mechanisms," 4th Edn., New York, NY, USA:Springer Science & Business Media, , se

accessed 19 June 2015. * Hammett, Louis P. (1940) ''Physical Organic Chemistry,'' New York, NY, USA: McGraw Hill, se

accessed 20 June 2015.


History

* n outstanding starting point on the history of the field, from a critically important contributor, referencing and discussing the early Hammett text, etc.


Thermochemistry

* L. K. Doraiswamy, 2005, "Estimation of properties of organic compounds (Ch. 3)," pp. 36–51, 118-124 (refs.), in ''Organic Synthesis Engineering,'' Oxford, Oxon, ENG:Oxford University Press, , se

accessed 22 June 2015. (This book chapter surveys a very wide range of physical properties and their estimation, including the narrow list of thermochemical properties appearing in the June 2015 WP article, placing the Benson et al. method alongside many other methods. L. K. Doraiswamy is ''Anson Marston Distinguished Professor of Engineering'' at
Iowa State University Iowa State University of Science and Technology (Iowa State University, Iowa State, or ISU) is a public land-grant research university in Ames, Iowa. Founded in 1858 as the Iowa Agricultural College and Model Farm, Iowa State became one of th ...
.) * {{DEFAULTSORT:Physical Organic Chemistry Organic chemistry