HOME

TheInfoList



OR:

Petroleum geology is the study of origin, occurrence, movement, accumulation, and exploration of hydrocarbon fuels. It refers to the specific set of geological disciplines that are applied to the search for
hydrocarbons In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
( oil exploration).


Sedimentary basin analysis

Petroleum geology is principally concerned with the evaluation of seven key elements in
sedimentary basin Sedimentary basins are region-scale depressions of the Earth's crust where subsidence has occurred and a thick sequence of sediments have accumulated to form a large three-dimensional body of sedimentary rock. They form when long-term subsiden ...
s: * Source *
Reservoir A reservoir (; from French ''réservoir'' ) is an enlarged lake behind a dam. Such a dam may be either artificial, built to store fresh water or it may be a natural formation. Reservoirs can be created in a number of ways, including contr ...
* Seal * Trap * Timing * Maturation * Migration In general, all these elements must be assessed via a limited 'window' into the subsurface world, provided by one (or possibly more) exploration wells. These wells present only a 1-dimensional segment through the Earth, and the skill of inferring 3-dimensional characteristics from them is one of the most fundamental in petroleum geology. Recently, the availability of inexpensive, high quality 3D seismic data (from reflection seismology) and data from various electromagnetic geophysical techniques (such as magnetotellurics) has greatly aided the accuracy of such interpretation. The following section discusses these elements in brief. For a more in-depth treatise, see the second half of this article below. Evaluation of the ''source'' uses the methods of
geochemistry Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing th ...
to quantify the nature of organic-rich rocks which contain the precursors to hydrocarbons, such that the type and quality of expelled hydrocarbon can be assessed. The ''reservoir'' is a porous and permeable lithological unit or set of units that holds the hydrocarbon reserves. Analysis of reservoirs at the simplest level requires an assessment of their
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measur ...
(to calculate the volume of '' in situ'' hydrocarbons) and their permeability (to calculate how easily hydrocarbons will flow out of them). Some of the key disciplines used in reservoir analysis are the fields of structural analysis,
stratigraphy Stratigraphy is a branch of geology concerned with the study of rock layers ( strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks. Stratigraphy has three related subfields: lithost ...
,
sedimentology Sedimentology encompasses the study of modern sediments such as sand, silt, and clay, and the processes that result in their formation (erosion and weathering), transport, deposition and diagenesis. Sedimentologists apply their understanding of m ...
, and reservoir engineering. The ''seal'', or ''cap'' rock, is a unit with low permeability that impedes the escape of hydrocarbons from the reservoir rock. Common seals include evaporites,
chalk Chalk is a soft, white, porous, sedimentary carbonate rock. It is a form of limestone composed of the mineral calcite and originally formed deep under the sea by the compression of microscopic plankton that had settled to the sea floor. C ...
s and shales. Analysis of seals involves assessment of their thickness and extent, such that their effectiveness can be quantified. The '' geological trap'' is the stratigraphic or structural feature that ensures the juxtaposition of reservoir and seal such that hydrocarbons remain trapped in the subsurface, rather than escaping (due to their natural
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the ...
) and being lost. Analysis of ''maturation'' involves assessing the thermal history of the
source rock In petroleum geology, source rock is rock which has generated hydrocarbons or which could generate hydrocarbons. Source rocks are one of the necessary elements of a working petroleum system. They are organic-rich sediments that may have been depo ...
in order to make predictions of the amount and timing of hydrocarbon generation and expulsion. Finally, careful studies of ''migration'' reveal information on how hydrocarbons move from source to reservoir and help quantify the source (or ''kitchen'') of hydrocarbons in a particular area.


Major subdisciplines in petroleum geology

Several major subdisciplines exist in petroleum geology specifically to study the seven key elements discussed above.


Critical Moment

The critical moment is the time of the generation, migration, and accumulation of most hydrocarbons in their primary traps. The migration and accumulation of hydrocarbons occur over a short period in relation to geologic time. These processes (generation, migration, and accumulation) occur near the end of a duration of a petroleum system. The duration being the time crucial elements of the petroleum system are being accumulated. The critical moment is crucial since it is based off the burial history of the source rock when it is at maximum burial depth. This is when most of the hydrocarbons are generated. Approximately 50%-90% petroleum is made and expelled at this point. The next step is the hydrocarbons entering the oil window. The oil window has to do with the source rock being the appropriate maturity, and also being at the right depth for oil exploration. Geoscientists will be need this to gather stratigraphic data of the petroleum system for analysis.


Source rock analysis

In terms of source rock analysis, several facts need to be established. Firstly, the question of whether there actually ''is'' any source rock in the area must be answered. Delineation and identification of potential source rocks depends on studies of the local
stratigraphy Stratigraphy is a branch of geology concerned with the study of rock layers ( strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks. Stratigraphy has three related subfields: lithost ...
, palaeogeography and
sedimentology Sedimentology encompasses the study of modern sediments such as sand, silt, and clay, and the processes that result in their formation (erosion and weathering), transport, deposition and diagenesis. Sedimentologists apply their understanding of m ...
to determine the likelihood of organic-rich sediments having been deposited in the past. If the likelihood of there being a source rock is thought to be high, the next matter to address is the state of thermal maturity of the source, and the timing of maturation. Maturation of source rocks (see diagenesis and
fossil fuel A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels ma ...
s) depends strongly on temperature, such that the majority of oil generation occurs in the range. Gas generation starts at similar temperatures, but may continue up beyond this range, perhaps as high as . In order to determine the likelihood of oil/gas generation, therefore, the thermal history of the source rock must be calculated. This is performed with a combination of geochemical analysis of the source rock (to determine the type of kerogens present and their maturation characteristics) and basin modelling methods, such as
back-stripping Back-stripping (also back stripping or backstripping) is a geophysical analysis technique used on sedimentary rock sequences. It is used to quantitatively estimate the depth that the basement would be in the absence of sediment and water loading. T ...
, to model the thermal gradient in the sedimentary column.


Geochemical analysis

The mid-twentieth century was when scientists began to seriously study petroleum geochemistry. Geochemistry was originally utilized for surface prospecting for subsurface hydrocarbons. Today geochemistry serves the petroleum industry by helping seek out effective petroleum systems. The use of geochemistry is relatively cost-effective that allows geologists to assess reservoir-related issues. Once oil to source rock correlation is found, petroleum geologists will use this information to render a 3D model of the basin. Now they can assess the timing of generation, migration, and accumulation relative to the trap formation. This aids in the decision-making process on whether further exploration is necessary. Additionally, this can increase recoveries of the petroleum remaining in reservoirs that were initially deemed unrecoverable.


Basin analysis

A full scale basin analysis is usually carried out prior to defining leads and prospects for future drilling. This study tackles the petroleum system and studies source rock (presence and quality); burial history; maturation (timing and volumes); migration and focus; and potential regional seals and major reservoir units (that define carrier beds). All these elements are used to investigate where potential hydrocarbons might migrate towards. Traps and potential leads and prospects are then defined in the area that is likely to have received hydrocarbons.


Exploration stage

Although a basin analysis is usually part of the first study a company conducts prior to moving into an area for future exploration, it is also sometimes conducted during the exploration phase. Exploration geology comprises all the activities and studies necessary for finding new hydrocarbon occurrence. Usually seismic (or 3D seismic) studies are shot, and old exploration data (seismic lines, well logs, reports) are used to expand upon the new studies. Sometimes gravity and magnetic studies are conducted, and oil seeps and spills are mapped to find potential areas for hydrocarbon occurrences. As soon as a significant hydrocarbon occurrence is found by an
exploration Exploration refers to the historical practice of discovering remote lands. It is studied by geographers and historians. Two major eras of exploration occurred in human history: one of convergence, and one of divergence. The first, covering most ...
- or wildcat-well, the appraisal stage starts.


Appraisal stage

The appraisal stage is used to delineate the extent of the discovery. Hydrocarbon reservoir properties, connectivity, hydrocarbon type and gas-oil and oil-water contacts are determined to calculate potential recoverable volumes. This is usually done by drilling more appraisal wells around the initial exploration well. Production tests may also give insight in reservoir pressures and connectivity. Geochemical and
petrophysical Petrophysics (from the Greek πέτρα, ''petra'', "rock" and φύσις, ''physis'', "nature") is the study of physical and chemical rock properties and their interactions with fluids. A major application of petrophysics is in studying reser ...
analysis gives information on the type (
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
, chemistry, API, carbon content, etc.) of the hydrocarbon and the nature of the reservoir (porosity, permeability, etc.).


Production stage

After a hydrocarbon occurrence has been discovered and appraisal has indicated it is a commercial find, the production stage is initiated. This stage focuses on extracting the hydrocarbons in a controlled way (without damaging the formation, within commercial favorable volumes, etc.). Production wells are drilled and completed in strategic positions. 3D seismic is usually available by this stage to target wells precisely for optimal recovery. Sometimes enhanced recovery ( steam injection, pumps, etc.) is used to extract more hydrocarbons or to redevelop abandoned fields.


Reservoir analysis

The existence of a reservoir rock (typically,
sandstones Sandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks. Most sandstone is composed of quartz or feldspar (both silicates) ...
and fractured limestones) is determined through a combination of regional studies (i.e. analysis of other wells in the area), stratigraphy and sedimentology (to quantify the pattern and extent of sedimentation) and seismic interpretation. Once a possible hydrocarbon reservoir is identified, the key physical characteristics of a reservoir that are of interest to a hydrocarbon explorationist are its bulk rock volume, net-to-gross ratio, porosity and permeability. Bulk rock volume, or the gross rock volume of rock above any hydrocarbon-water contact, is determined by mapping and correlating sedimentary packages. The net-to-gross ratio, typically estimated from analogues and wireline logs, is used to calculate the proportion of the sedimentary packages that contains reservoir rocks. The bulk rock volume multiplied by the net-to-gross ratio gives the net rock volume of the reservoir. The net rock volume multiplied by porosity gives the total hydrocarbon pore volume, i.e. the volume within the sedimentary package that fluids (importantly, hydrocarbons and water) can occupy. The summation of these volumes (see
STOIIP Oil in place (OIP) (not to be confused with original oil-in-place (OOIP)) is a specialist term in petroleum geology that refers to the total oil content of an oil reservoir. As this quantity cannot be measured directly, it has to be estimated from ...
and GIIP) for a given exploration prospect will allow explorers and commercial analysts to determine whether a prospect is financially viable. Traditionally, porosity and permeability were determined through the study of drilling samples, analysis of cores obtained from the
wellbore A borehole is a narrow shaft bored in the ground, either vertically or horizontally. A borehole may be constructed for many different purposes, including the extraction of water ( drilled water well and tube well), other liquids (such as petr ...
, examination of contiguous parts of the reservoir that outcrop at the surface (see e.g. Guerriero et al., 2009, 2011, in references below) and by the technique of formation evaluation using wireline tools passed down the well itself. Modern advances in seismic data acquisition and processing have meant that
seismic attribute In reflection seismology, a seismic attribute is a quantity extracted or derived from seismic data that can be analysed in order to enhance information that might be more subtle in a traditional seismic image, leading to a better geological or geop ...
s of subsurface rocks are readily available and can be used to infer physical/sedimentary properties of the rocks themselves.


See also

* Bituminous rocks * Controlled source electro-magnetic * Important publications in petroleum geology


References

* * * *


Further reading

* Brian Frehner. ''Finding Oil: The Nature of Petroleum Geology, 1859–1920'' ( University of Nebraska Press; 2011) 232 pages


External links


Petroleum Geology
— A forum dedicated to all aspects of petroleum geology from exploration to production
Oil On My Shoes
— Website devoted to the science and practical application of petroleum geology
AAPG
— American Association of Petroleum Geologists
PetroleumGeology.org
— Website about the history and technology of petroleum geology {{Petroleum industry Economic geology