HOME

TheInfoList



OR:

The periplasm is a concentrated gel-like
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
in the space between the inner
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. Th ...
ic membrane and the
bacterial outer membrane The bacterial outer membrane is found in gram-negative bacteria. Its composition is distinct from that of the inner cytoplasmic cell membrane - among other things, the outer leaflet of the outer membrane of many gram-negative bacteria includes ...
called the ''periplasmic space'' in gram-negative bacteria. Using
cryo-electron microscopy Cryogenic electron microscopy (cryo-EM) is a cryomicroscopy technique applied on samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An aqueous sample so ...
it has been found that a much smaller periplasmic space is also present in gram-positive bacteria., Matias, V. R., and T. J. Beveridge. 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56:240-251. ., Zuber B, Haenni M, Ribeiro T, Minnig K, Lopes F, Moreillon P, Dubochet J. 2006. Granular layer in the periplasmic space of Gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. J Bacteriol. 188:6652-6660. The periplasm may constitute up to 40% of the total cell volume of gram-negative bacteria, but is a much smaller percentage in gram-positive bacteria. Several types of enzyme are present in the periplasm including
alkaline phosphatase The enzyme alkaline phosphatase (EC 3.1.3.1, alkaline phosphomonoesterase; phosphomonoesterase; glycerophosphatase; alkaline phosphohydrolase; alkaline phenyl phosphatase; orthophosphoric-monoester phosphohydrolase (alkaline optimum), systematic ...
s, cyclic phosphodiesterases,
acid phosphatase Acid phosphatase (EC 3.1.3.2, acid phosphomonoesterase', phosphomonoesterase, glycerophosphatase, acid monophosphatase, acid phosphohydrolase, acid phosphomonoester hydrolase, uteroferrin, acid nucleoside diphosphate phosphatase, orthophosphoric-m ...
s and 5’-nucleotidases. Although bacteria are conventionally divided into two main groups—gram-positive and gram-negative, based upon their
Gram-stain In microbiology and bacteriology, Gram stain (Gram staining or Gram's method), is a method of staining used to classify bacterial species into two large groups: gram-positive bacteria and gram-negative bacteria. The name comes from the Danish ba ...
retention property—this classification system is ambiguous as it can refer to three distinct aspects (staining result, cell-envelope organization, taxonomic group), which do not necessarily coalesce for some bacterial species.Gupta, R.S. (1998) Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria and eukaryotes. Microbiol. Mol. Biol. Rev. 62: 1435-1491.Gupta, R.S.(2000) The natural evolutionary relationships among prokaryotes. Crit. Rev. Microbiol. 26: 111-131., Desvaux M, Hébraud M, Talon R, Henderson IR. 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17:139-145. , Sutcliffe IC. 2010. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18:464-470. However, although Gram-staining response of bacteria is an empirical criterion, its basis lies in the marked differences in the ultrastructure and chemical composition of the two main kinds of bacteria. These bacteria are distinguished from each other based on the presence or absence of an outer lipid membrane, which is a more reliable and fundamental characteristic of the bacterial cells.Gupta, R. S. (1998). What are archaebacteria: life’s third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Molecular Microbiology.29(3):695-707. All gram-positive bacteria are bounded by a single unit lipid membrane; they generally contain a thick layer (20-80 nm) of peptidoglycan responsible for retaining the Gram-stain. A number of other bacteria which are bounded by a single membrane but stain gram-negative due to either lack of the peptidoglycan layer (viz., mycoplasmas) or their inability to retain the Gram-stain due to their cell wall composition, also show close relationship to the gram-positive bacteria. For the bacterial (prokaryotic) cells that are bounded by a single cell membrane the term "monoderm bacteria" or "monoderm prokaryotes" has been proposed. In contrast to gram-positive bacteria, all archetypical gram-negative bacteria are bounded by a cytoplasmic membrane as well as an outer cell membrane; they contain only a thin layer of peptidoglycan (2–3 nm) between these membranes. The presence of both inner and outer cell membranes forms and define the periplasmic space or periplasmic compartment. These bacterial cells with two membranes have been designated as diderm bacteria. The distinction between the monoderm and diderm prokaryotes is supported by
conserved signature indels Conserved signature inserts and deletions (CSIs) in protein sequences provide an important category of molecular markers for understanding phylogenetic relationships. CSIs, brought about by rare genetic changes, provide useful phylogenetic markers ...
in a number of important proteins (for example,
DnaK The 70 kilodalton heat shock proteins (Hsp70s or DnaK) are a family of conserved ubiquitously expressed heat shock proteins. Proteins with similar structure exist in virtually all living organisms. Intracellularly localized Hsp70s are an importa ...
and
GroEL GroEL is a protein which belongs to the chaperonin family of molecular chaperones, and is found in many bacteria. It is required for the proper folding of many proteins. To function properly, GroEL requires the lid-like cochaperonin protein co ...
).Gupta, R. S. (2011). Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek. 100:171-182. In
diderm bacteria Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wall ...
, the periplasm contains a thin
cell wall A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering me ...
composed of peptidoglycan. In addition, it includes solutes such as ions and proteins, which are involved in wide variety of functions ranging from nutrient binding, transport, folding, degradation, substrate hydrolysis, to peptidoglycan synthesis,
electron transport An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
, and alteration of substances toxic to the cell (
xenobiotic metabolism Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism (from the Greek xenos "stranger" and biotic "related to living beings") is the set of ...
). Importantly, the periplasm is devoid of ATP.


References


Further reading

* D. White, ''The Physiology and Biochemistry of Prokaryotes,'' Oxford University Press, Oxford, 2000, pp. 22. {{Bacteria Cell anatomy Bacteriology