HOME

TheInfoList



OR:

In a radio antenna, a passive radiator or parasitic element is a conductive element, typically a metal rod, which is not electrically connected to anything else. Multielement antennas such as the
Yagi–Uda antenna A Yagi–Uda antenna or simply Yagi antenna, is a directional antenna consisting of two or more parallel resonant antenna elements in an end-fire array; these elements are most often metal rods acting as half-wave dipoles. Yagi–Ud ...
typically consist of a "'' driven element''" which is connected to the
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
or
transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the ...
through a feed line, and parasitic elements, which are not. The purpose of the parasitic elements is to modify the
radiation pattern In the field of antenna design the term radiation pattern (or antenna pattern or far-field pattern) refers to the ''directional'' (angular) dependence of the strength of the radio waves from the antenna or other source.Constantine A. Balanis: “A ...
of the radio waves emitted by the driven element, directing them in a beam in one direction, increasing the antenna's
directivity In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It is the ratio of the radiation intensity in a given direction fr ...
(
gain Gain or GAIN may refer to: Science and technology * Gain (electronics), an electronics and signal processing term * Antenna gain * Gain (laser), the amplification involved in laser emission * Gain (projection screens) * Information gain in de ...
). A parasitic element does this by acting as a passive
resonator A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator ...
, something like a guitar's sound box, absorbing the radio waves from the nearby driven element and re-radiating them again with a different phase. The waves from the different antenna elements interfere, strengthening the antenna's radiation in the desired direction, and cancelling out the waves in undesired directions.


Description

The parasitic elements in a Yagi antenna are mounted parallel to the driven element, with all the elements usually in a line perpendicular to the direction of radiation of the antenna. What effect a parasitic element has on the radiation pattern depends both on its separation from the next element, and on its length. The driven element of the antenna is usually a half-wave dipole, its length half a
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
of the radio waves used. The parasitic elements are of two types. A "''reflector''" is slightly longer (around 5%) than a half-wavelength. It serves to reflect the radio waves in the opposite direction. A "''director''" is slightly shorter than a half-wavelength; it serves to increase the radiation in a given direction. A Yagi antenna may have a reflector on one side of the driven element, and one or more directors on the other side. If all the elements are in a plane, usually only one reflector is used, because additional ones give little improvement in gain, but sometimes additional reflectors are mounted above and below the plane of the antenna on a vertical bracket at the end. All the elements are usually mounted on a metal beam or bracket along the antenna's central axis. Although sometimes the parasitic elements are insulated from the supporting beam, often they are clamped or welded directly to it, electrically connected to it. This doesn't affect their functioning, because the RF voltage distribution along the element is maximum at the ends and goes to zero (has a ''
node In general, a node is a localized swelling (a " knot") or a point of intersection (a vertex). Node may refer to: In mathematics * Vertex (graph theory), a vertex in a mathematical graph * Vertex (geometry), a point where two or more curves, line ...
'') at the midpoint where the grounded beam is attached. The addition of parasitic elements gives a diminishing improvement in the antenna's gain. Adding a reflector to a dipole, to make a 2-element Yagi, increases the gain by about 5 dB over the dipole. Adding a director to this, to give a 3-element Yagi, gives a gain of about 7 dB over a dipole. As a rule of thumb, each additional parasitic element beyond this adds about 1 dB of gain. In an example of a parasitic element that is not rod-shaped, a parasitic microstrip patch antenna is sometimes mounted above another driven patch antenna. This antenna combination resonates at a slightly lower frequency than the original element. However, the main effect is to greatly increase the impedance bandwidth of the antenna. In some cases the bandwidth can be increased by a factor of 10. Not all types of thin conductor multielement antennas have parasitic elements. The log periodic antenna is similar in appearance to a Yagi, but all of its elements are driven elements, connected to the transmitter or receiver.


See also

* Driven element * Antenna array (electromagnetic)


References

* {{DEFAULTSORT:Passive Radiator Antennas (radio)