HOME

TheInfoList



OR:

Particulate organic matter (POM) is a fraction of total organic matter operationally defined as that which does not pass through a filter pore size that typically ranges in size from 0.053 to 2 millimeters. Particulate organic carbon (POC) is a closely related term often used interchangeably with POM. POC refers specifically to the mass of carbon in the particulate organic material, while POM refers to the total mass of the particulate organic matter. In addition to carbon, POM includes the mass of the other elements in the organic matter, such as nitrogen, oxygen and hydrogen. In this sense POC is a component of POM and there is typically about twice as much POM as POC. Many statements that can be made about POM apply equally to POC, and much of what is said in this article about POM could equally have been said of POC. Particulate organic matter is sometimes called suspended organic matter, macroorganic matter, or coarse fraction organic matter. When land samples are isolated by
sieving A sieve, fine mesh strainer, or sift, is a device for separating wanted elements from unwanted material or for controlling the particle size distribution of a sample, using a screen such as a woven mesh or net or perforated sheet material. ...
or filtration, this fraction includes partially decomposed
detritus In biology, detritus () is dead particulate organic material, as distinguished from dissolved organic material. Detritus typically includes the bodies or fragments of bodies of dead organisms, and fecal material. Detritus typically hosts comm ...
and plant material,
pollen Pollen is a powdery substance produced by seed plants. It consists of pollen grains (highly reduced microgametophytes), which produce male gametes (sperm cells). Pollen grains have a hard coat made of sporopollenin that protects the gametop ...
, and other materials. When sieving to determine POM content, consistency is crucial because isolated size fractions will depend on the force of agitation. POM is readily decomposable, serving many
soil functions Soil functions are general capabilities of soils that are important for various agricultural, environmental, nature protection, landscape architecture and urban applications. Soil can perform many functions and these include functions related to ...
and providing terrestrial material to water bodies. It is a source of food for both
soil organisms Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a ...
and aquatic organisms and provides
nutrients A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excr ...
for plants. In water bodies, POM can contribute substantially to turbidity, limiting photic depth which can suppress primary productivity. POM also enhances
soil structure Soil structure describes the arrangement or the way of soil in the solid parts of the soil and of the pore space located between them. It is determined by how individual soil granules clump, bind together, and aggregate, resulting in the arrangem ...
leading to increased
water infiltration Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meter ...
, aeration and resistance to
erosion Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited. Erosion is d ...
Soil management Soil management is the application of operations, practices, and treatments to protect soil and enhance its performance (such as soil fertility or soil mechanics). It includes soil conservation, soil amendment, and optimal soil health. In agricu ...
practices, such as
tillage Tillage is the agricultural preparation of soil by mechanical agitation of various types, such as digging, stirring, and overturning. Examples of human-powered tilling methods using hand tools include shoveling, picking, mattock work, hoein ...
and
compost Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical and biological properties. It is commonly prepared by decomposing plant, food waste, recycling organic materials and manure. The resulting ...
/
manure Manure is organic matter that is used as organic fertilizer in agriculture. Most manure consists of animal feces; other sources include compost and green manure. Manures contribute to the Soil fertility, fertility of soil by adding organic ma ...
application, alter the POM content of soil and water.


Overview

Particulate organic carbon (POC) is operationally defined as all combustible, non-
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
carbon that can be collected on a
filter Filter, filtering or filters may refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component tha ...
. The oceanographic community has historically used a variety of filters and pore sizes, most commonly 0.7, 0.8, or 1.0
μm The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer ( American spelling), also commonly known as a micron, is a unit of length in the International System of Uni ...
glass or quartz fiber filters. The
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bio ...
of living
zooplankton Zooplankton are the animal component of the planktonic community ("zoo" comes from the Greek word for ''animal''). Plankton are aquatic organisms that are unable to swim effectively against currents, and consequently drift or are carried along by ...
is intentionally excluded from POC through the use of a pre-filter or specially designed sampling intakes that repel swimming organisms. Sub-micron particles, including most marine prokaryotes, which are 0.2–0.8 μm in diameter, are often not captured but should be considered part of POC rather than
dissolved organic carbon Dissolved organic carbon (DOC) is the fraction of organic carbon operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometers. The fraction remaining on the filter is called partic ...
(DOC), which is usually operationally defined as < 0.2 μm. Typically POC is considered to contain suspended and sinking particles ≥ 0.2 μm in size, which therefore includes biomass from living microbial cells,
detrital Detritus (; adj. ''detrital'' ) is particles of rock derived from pre-existing rock through weathering and erosion.Essentials of Geology, 3rd Ed, Stephen Marshak, p G-7 A fragment of detritus is called a clast.Essentials of Geology, 3rd Ed, Stephe ...
material including dead cells,
fecal pellet Feces ( or faeces), known colloquially and in slang as poo and poop, are the solid or semi-solid remains of food that was not digested in the small intestine, and has been broken down by bacteria in the large intestine. Feces contain a relati ...
s, other aggregated material, and terrestrially-derived organic matter. Some studies further divide POC operationally based on its sinking rate or size, with ≥ 51 μm particles sometimes equated to the sinking fraction. Both DOC and POC play major roles in the
carbon cycle The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major compon ...
, but POC is the major pathway by which organic carbon produced by
phytoplankton Phytoplankton () are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words (), meaning 'plant', and (), meaning 'wanderer' or 'drifter'. ...
is exported – mainly by gravitational settling – from the surface to the deep ocean and eventually to
sediments Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sa ...
, and is thus a key component of the
biological pump The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments.Sigman DM & GH ...
.


Terrestrial ecosystems


Soil organic matter

Soil organic matter Soil organic matter (SOM) is the organic matter component of soil, consisting of plant and animal detritus at various stages of decomposition, cells and tissues of soil microbes, and substances that soil microbes synthesize. SOM provides numerous b ...
is anything in the soil of biological origin. Carbon is its key component comprising about 58% by weight. Simple assessment of total organic matter is obtained by measuring organic carbon in soil. Living organisms (including roots) contribute about 15% of the total organic matter in soil. These are critical to operation of the soil
carbon cycle The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major compon ...
. What follows refers to the remaining 85% of the soil organic matter - the non-living component.Soil: Forms and Function
''Victorian Resources Online''. Updated 23 March 2020. Text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
As shown below, non-living organic matter in soils can be grouped into four distinct categories on the basis of size, behaviour and persistence.Baldock JA and Skjemstad JO (1999) "Soil organic carbon/soil organic matter in soil". In KI Peverill, LA Sparrow and DJ Reuter (Eds.) ''Soil analysis: an interpretation manual'', pages 159–170, Commonwealth Scientific and Industrial Research Organisation, Melbourne. These categories are arranged in order of decreasing ability to decompose. Each of them contribute to soil health in different ways.
Dissolved organic matter Dissolved organic carbon (DOC) is the fraction of organic carbon operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometers. The fraction remaining on the filter is called parti ...
(DOM): is the organic matter which dissolves in soil water. It comprises the relatively simple organic compounds (e.g. organic acids, sugars and amino acids) which easily decompose. It has a turnover time of less than 12 months. Exudates from plant roots (mucilages and gums) are included here. Particulate organic matter (POM): is the organic matter that retains evidence of its original cellular structure, and is discussed further in the next section.
Humus In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Lati ...
: is usually the largest proportion of organic matter in soil, contributing 45 to 75%. Typically it adheres to soil minerals, and plays an important role structuring soil. Humus is the end product of soil organism activity, is chemically complex, and does not have recognisable characteristics of its origin. Humus is of very small unit size and has large surface area in relation to its weight. It holds nutrients, has high water holding capacity and significant
cation exchange capacity Cation-exchange capacity (CEC) is a measure of how many cations can be retained on soil particle surfaces. Negative charges on the surfaces of soil particles bind positively-charged atoms or molecules (cations), but allow these to exchange with ot ...
, buffers pH change and can hold cations. Humus is quite slow to decompose and exists in soil for decades. Resistant organic matter: has a high carbon content and includes charcoal, charred plant materials, graphite and coal. Turnover times are long and estimated in hundreds of years. It is not biologically active but contributes positively to soil structural properties, including water holding capacity, cation exchange capacity and thermal properties.


Role of POM in soils

Particulate organic matter (POM) includes steadily decomposing plant litter and animal faeces, and the detritus from the activity of microorganisms. Most of it continually undergoes decomposition by microorganisms (when conditions are sufficiently moist) and usually has a turnover time of less than 10 years. Less active parts may take 15 to 100 years to turnover. Where it is still at the soil surface and relatively fresh, particulate organic matter intercepts the energy of raindrops and protects physical soil surfaces from damage. As it is decomposes, particulate organic matter provides much of the energy required by soil organisms as well as providing a steady release of nutrients into the soil environment. The
decomposition Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and ...
of POM provides energy and nutrients. Nutrients not taken up by soil organisms may be available for plant uptake. The amount of nutrients released ( mineralized) during decomposition depends on the biological and chemical characteristics of the POM, such as the C:N ratio. In addition to nutrient release, decomposers colonizing POM play a role in improving soil structure. Fungal
mycelium Mycelium (plural mycelia) is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates ...
entangle soil particles and release sticky, cement-like, polysaccharides into the soil; ultimately forming soil aggregates Soil POM content is affected by organic inputs and the activity of soil decomposers. The addition of organic materials, such as manure or crop residues, typically results in an increase in POM. Alternatively, repeated tillage or soil disturbance increases the rate of decomposition by exposing soil organisms to oxygen and organic substrates; ultimately, depleting POM. Reduction in POM content is observed when native grasslands are converted to agricultural land. Soil temperature and moisture also affect the rate of POM decomposition. Because POM is a readily available (labile) source of soil nutrients, is a contributor to soil structure, and is highly sensitive to soil management, it is frequently used as an indicator to measure
soil quality Soil quality refers to the condition of soil based on its capacity to perform ecosystem services that meet the needs of human and non-human life.Tóth, G., Stolbovoy, V. and Montanarella, 2007. Soil Quality and Sustainability Evaluation - An integr ...
.


Freshwater ecosystems

In poorly-managed soils, particularly on sloped ground, erosion and transport of soil
sediment Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand ...
rich in POM can contaminate water bodies. Because POM provides a source of energy and nutrients, rapid build-up of organic matter in water can result in
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phyt ...
. Suspended organic materials can also serve as a potential vector for the pollution of water with fecal bacteria, toxic metals or organic compounds.


Marine ecosystems

Life and particulate organic matter in the ocean have fundamentally shaped the planet. On the most basic level, ''particulate organic matter'' can be defined as both living and non-living matter of biological origin with a size of ≥0.2 μm in diameter, including anything from a small bacterium (0.2 μm in size) to blue whales (20 m in size). Organic matter plays a crucial role in regulating global marine biogeochemical cycles and events, from the
Great Oxidation Event The Great Oxidation Event (GOE), also called the Great Oxygenation Event, the Oxygen Catastrophe, the Oxygen Revolution, the Oxygen Crisis, or the Oxygen Holocaust, was a time interval during the Paleoproterozoic era when the Earth's atmosphere ...
in Earth's early history to the sequestration of atmospheric carbon dioxide in the deep ocean. Understanding the distribution, characteristics, dynamics, and changes over time of particulate matter in the ocean is hence fundamental in understanding and predicting the marine ecosystem, from food web dynamics to global biogeochemical cycles.


Measuring POM

Optical particle measurements are emerging as an important technique for understanding the ocean carbon cycle, including contributions to estimates of their downward flux, which sequesters carbon dioxide in the deep sea. Optical instruments can be used from ships or installed on autonomous platforms, delivering much greater spatial and temporal coverage of particles in the
mesopelagic zone The mesopelagic zone ( Greek μέσον, middle), also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins a ...
of the ocean than traditional techniques, such as sediment traps. Technologies to image particles have advanced greatly over the last two decades, but the quantitative translation of these immense datasets into biogeochemical properties remains a challenge. In particular, advances are needed to enable the optimal translation of imaged objects into carbon content and sinking velocities. In addition, different devices often measure different optical properties, leading to difficulties in comparing results.Giering, S.L., Cavan, E.L., Basedow, S.L., Briggs, N., Burd, A.B., Darroch, L.J., Guidi, L., Irrison, J.O., Iversen, M.H., Kiko, R. and Lindsay, D.J. (2020) "Sinking organic particles in the ocean—flux estimates from in situ optical devices". . Material was copied from this source, which is available under
Creative Commons Attribution 4.0 International License


Ocean primary production

Marine primary production Marine primary production is the chemical synthesis in the ocean of organic compounds from atmospheric or dissolved carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it al ...
can be divided into ''new production'' from allochthonous nutrient inputs to the
euphotic zone The photic zone, euphotic zone, epipelagic zone, or sunlight zone is the uppermost layer of a body of water that receives sunlight, allowing phytoplankton to perform photosynthesis. It undergoes a series of physical, chemical, and biological proc ...
, and ''regenerated production'' from nutrient recycling in the surface waters. The total new production in the ocean roughly equates to the sinking flux of particulate organic matter to the deep ocean, about 4 × 109 tons of carbon annually.


Model of sinking oceanic particles

Sinking oceanic particles encompass a wide range of shape, porosity, ballast and other characteristics. The model shown in the diagram at the right attempts to capture some of the predominant features that influence the shape of the sinking flux profile (red line). The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. The diagram illustrates a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Marine snow varies in shape, size and character, ranging from individual cells to pellets and aggregates, most of which is rapidly colonized and consumed by heterotrophic bacteria, contributing to the attenuation of the sinking flux with depth.


Sinking velocity

The range of recorded sinking velocities of particles in the oceans spans from negative (particles float toward the surface) to several km per day (as with salp fecal pellets) When considering the sinking velocity of an individual particle, a first approximation can be obtained from Stoke's law (originally derived for spherical, non-porous particles and laminar flow) combined with White's approximation, which suggest that sinking velocity increases linearly with excess density (the difference from the water density) and the square of particle diameter (i.e., linearly with the particle area). Building on these expectations, many studies have tried to relate sinking velocity primarily to size, which has been shown to be a useful predictor for particles generated in controlled environments (e.g., roller tanks. However, strong relationships were only observed when all particles were generated using the same water/plankton community. When particles were made by different plankton communities, size alone was a bad predictor (e.g., Diercks and Asper, 1997) strongly supporting notions that particle densities and shapes vary widely depending on the source material. Packaging and porosity contribute appreciably to determining sinking velocities. On the one hand, adding ballasting materials, such as diatom frustules, to aggregates may lead to an increase in sinking velocities owing to the increase in excess density. On the other hand, the addition of ballasting mineral particles to marine particle populations frequently leads to smaller more densely packed aggregates that sink slower because of their smaller size. Mucous-rich particles have been shown to float despite relatively large sizes, whereas oil- or plastic-containing aggregates have been shown to sink rapidly despite the presence of substances with an excess density smaller than seawater. In natural environments, particles are formed through different mechanisms, by different organisms, and under varying environmental conditions that affect aggregation (e.g., salinity, pH, minerals), ballasting (e.g., dust deposition, sediment load; van der Jagt et al., 2018) and sinking behaviour (e.g., viscosity;). A universal conversion of size-to-sinking velocity is hence impracticable.


Role in the lower aquatic food web

Along with
dissolved organic matter Dissolved organic carbon (DOC) is the fraction of organic carbon operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometers. The fraction remaining on the filter is called parti ...
, POM drives the lower aquatic food web by providing energy in the form of carbohydrates, sugars, and other polymers that can be degraded. POM in water bodies is derived from terrestrial inputs (e.g. soil organic matter, leaf litterfall), submerged or floating aquatic vegetation, or autochthonous production of algae (living or detrital). Each source of POM has its own chemical composition that affects its lability, or accessibility to the food web. Algal-derived POM is thought to be most labile, but there is growing evidence that terrestrially-derived POM can supplement the diets of micro-organisms such as zooplankton when primary productivity is limited.


The biological carbon pump

The dynamics of the particulate organic carbon (POC) pool in the ocean are central to the
marine carbon cycle The oceanic carbon cycle (or marine carbon cycle) is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the Seabed, seafloor. The carbon cycle is a result of ma ...
. POC is the link between surface primary production, the deep ocean, and sediments. The rate at which POC is degraded in the dark ocean can impact atmospheric CO2 concentration. Therefore, a central focus of marine organic geochemistry studies is to improve the understanding of POC distribution, composition, and cycling. The last few decades have seen improvements in analytical techniques that have greatly expanded what can be measured, both in terms of organic compound structural diversity and isotopic composition, and complementary molecular omics studies. As illustrated in the diagram,
phytoplankton Phytoplankton () are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words (), meaning 'plant', and (), meaning 'wanderer' or 'drifter'. ...
fix carbon dioxide in the
euphotic zone The photic zone, euphotic zone, epipelagic zone, or sunlight zone is the uppermost layer of a body of water that receives sunlight, allowing phytoplankton to perform photosynthesis. It undergoes a series of physical, chemical, and biological proc ...
using solar energy and produce POC. POC formed in the euphotic zone is processed by
marine microorganisms Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism (or microbe) is any microscopic livin ...
(microbes),
zooplankton Zooplankton are the animal component of the planktonic community ("zoo" comes from the Greek word for ''animal''). Plankton are aquatic organisms that are unable to swim effectively against currents, and consequently drift or are carried along by ...
and their consumers into organic aggregates (
marine snow In the deep ocean, marine snow (also known as "ocean dandruff") is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to ...
), which is then exported to the
mesopelagic The mesopelagic zone (Greek μέσον, middle), also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at ...
(200–1000 m depth) and
bathypelagic zone The bathypelagic zone or bathyal zone (from Greek βαθύς (bathýs), deep) is the part of the open ocean that extends from a depth of below the ocean surface. It lies between the mesopelagic above, and the abyssopelagic below. The bathypelagi ...
s by sinking and vertical migration by zooplankton and fish.Basu, S. and Mackey, K.R. (2018) "Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate". ''Sustainability'', 10(3): 869. . Material was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
Passow, U. and Carlson, C.A. (2012) "The biological pump in a high CO2 world". ''Marine Ecology Progress Series'', 470: 249–271. . The
biological carbon pump The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments.Sigman DM & GH ...
describes the collection of biogeochemical processes associated with the production, sinking, and remineralization of organic carbon in the ocean. In brief, photosynthesis by microorganisms in the upper tens of meters of the water column fix inorganic carbon (any of the chemical species of dissolved carbon dioxide) into
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bio ...
. When this biomass sinks to the deep ocean, a portion of it fuels the metabolism of the organisms living there, including deep-sea fish and benthic organisms. Zooplankton play a critical role in shaping particle flux through ingestion and fragmentation of particles, production of fast-sinking fecal materialIversen, M.H., Pakhomov, E.A., Hunt, B.P., Van der Jagt, H., Wolf-Gladrow, D. and Klaas, C. (2017) "Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean". ''Deep Sea Research Part II: Topical Studies in Oceanography'', 138: 116–125. . and active vertical migration. Besides the importance of "exported" organic carbon as a food source for deep ocean organisms, the biological carbon pump provides a valuable ecosystem function: Exported organic carbon transports an estimated 5–20 Gt C each year to the deep ocean, where some of it (~0.2–0.5 Gt C) is sequestered for several millennia. The biological carbon pump is hence of similar magnitude to current carbon emissions from fossil fuels (~10 Gt C year−1). Any changes in its magnitude caused by a warming world may have direct implications for both deep-sea organisms and atmospheric carbon dioxide concentrations.Kwon, E.Y., Primeau, F. and Sarmiento, J.L. (2009) "The impact of remineralization depth on the air–sea carbon balance". ''Nature Geoscience'', 2(9): 630–635. . The magnitude and efficiency (amount of carbon sequestered relative to primary production) of the biological carbon pump, hence ocean carbon storage, is partly determined by the amount of organic matter exported and the rate at which it is remineralized (i.e., the rate with which sinking organic matter is reworked and respired in the
mesopelagic zone The mesopelagic zone ( Greek μέσον, middle), also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins a ...
region.Iversen, M. and Ploug, H. (2010) "Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates". ''Biogeosciences'', 7: 2613–2624. . Especially particle size and composition are important parameters determining how fast a particle sinks, how much material it contains, and which organisms can find and utilize it. Sinking particles can be phytoplankton, zooplankton, detritus, fecal pellets, or a mix of these. They range in size from a few micrometers to several centimeters, with particles of a diameter of >0.5 mm being referred to as
marine snow In the deep ocean, marine snow (also known as "ocean dandruff") is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to ...
. In general, particles in a fluid are thought to sink once their densities are higher than the ambient fluid, i.e., when excess densities are larger than zero. Larger individual phytoplankton cells can thus contribute to sedimentary fluxes. For example, large
diatom A diatom ( Neo-Latin ''diatoma''), "a cutting through, a severance", from el, διάτομος, diátomos, "cut in half, divided equally" from el, διατέμνω, diatémno, "to cut in twain". is any member of a large group comprising se ...
cells and diatom chains with a diameter of >5 μm have been shown to sink at rates up to several 10 s meters per day, though this is only possible owing to the heavy ballast of a silica
frustule A frustule is the hard and porous cell wall or external layer of diatoms. The frustule is composed almost purely of silica, made from silicic acid, and is coated with a layer of organic substance, which was referred to in the early literature on ...
. Both size and density affect particle sinking velocity; for example, for sinking velocities that follow
Stokes' Law In 1851, George Gabriel Stokes derived an expression, now known as Stokes' law, for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. Stokes' law is derived by ...
, doubling the size of the particle increases the sinking speed by a factor of 4. However, the highly porous nature of many marine particles means that they do not obey Stokes' Law because small changes in particle density (i.e., compactness) can have a large impact on their sinking velocities. Large sinking particles are typically of two types: (1) aggregates formed from a number of primary particles, including phytoplankton, bacteria,
fecal pellet Feces ( or faeces), known colloquially and in slang as poo and poop, are the solid or semi-solid remains of food that was not digested in the small intestine, and has been broken down by bacteria in the large intestine. Feces contain a relati ...
s, live
protozoa Protozoa (singular: protozoan or protozoon; alternative plural: protozoans) are a group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic tissues and debris. Histo ...
and zooplankton and debris, and (2)
zooplankton fecal pellets The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments.Sigman DM & GH ...
, which can dominate particle flux events and sink at velocities exceeding 1,000 m d−1. Knowing the size, abundance, structure and composition (e.g. carbon content) of settling particles is important as these characteristics impose fundamental constraints on the biogeochemical cycling of carbon. For example, changes in climate are expected to facilitate a shift in species composition in a manner that alters the elemental composition of particulate matter, cell size and the trajectory of carbon through the
food web A food web is the natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community. Another name for food web is consumer-resource system. Ecologists can broadly lump all life forms into one o ...
, influencing the proportion of biomass exported to depth. As such, any climate-induced change in the structure or function of phytoplankton communities is likely to alter the efficiency of the biological carbon pump, with feedbacks on the rate of climate change.


Bioluminescent shunt hypothesis

The consumption of the bioluminescent POC by fish can lead to the emission of bioluminescent fecal pellets (repackaging), which can also be produced with non-bioluminescent POC if the fish gut is already charged with bioluminescent bacteria. Material was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
In the diagram on the right, the sinking POC is moving downward followed by a chemical plume. The plain white arrows represent the carbon flow. Panel (a) represents the classical view of a non-bioluminescent particle. The length of the plume is identified by the scale on the side. Panel (b) represents the case of a glowing particle in the bioluminescence shunt hypothesis. Bioluminescent bacteria are represented aggregated onto the particle. Their light emission is shown as a bluish cloud around it. Blue dotted arrows represent the visual detection and the movement toward the particle of the consumer organisms. Increasing the visual detection allows a better detection by upper trophic levels, potentially leading to the fragmentation of sinking POC into suspended POC due to sloppy feeding.


See also

* Microbial loop *
Particulate matter Particulates – also known as atmospheric aerosol particles, atmospheric particulate matter, particulate matter (PM) or suspended particulate matter (SPM) – are microscopic particles of solid or liquid matter suspended in the air. The te ...
*
Total organic carbon Total organic carbon (TOC) is the amount of carbon found in an organic compound and is often used as a non-specific indicator of water quality or cleanliness of pharmaceutical manufacturing equipment. TOC may also refer to the amount of organi ...


References

{{reflist Chemical oceanography Environmental chemistry Soil