HOME

TheInfoList



OR:

In mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint.


Generalizations

This definition of disjoint sets can be extended to a
family of sets In set theory and related branches of mathematics, a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set fami ...
\left(A_i\right)_: the family is pairwise disjoint, or mutually disjoint if A_i \cap A_j = \varnothing whenever i \neq j. Alternatively, some authors use the term disjoint to refer to this notion as well. For families the notion of pairwise disjoint or mutually disjoint is sometimes defined in a subtly different manner, in that repeated identical members are allowed: the family is pairwise disjoint if A_i \cap A_j = \varnothing whenever A_i \neq A_j (every two ''distinct'' sets in the family are disjoint).. For example, the collection of sets is disjoint, as is the set of the two parity classes of integers; the family (\)_ with 10 members is not disjoint (because the classes of even and odd numbers are each present five times), but it is pairwise disjoint according to this definition (since one only gets a non-empty intersection of two members when the two are the same class). Two sets are said to be almost disjoint sets if their intersection is small in some sense. For instance, two
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only s ...
s whose intersection is a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. T ...
may be said to be almost disjoint. In
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, there are various notions of
separated sets In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets a ...
with more strict conditions than disjointness. For instance, two sets may be considered to be separated when they have disjoint closures or disjoint
neighborhoods A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural area, ...
. Similarly, in a
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
,
positively separated sets In mathematics, two non-empty subsets ''A'' and ''B'' of a given metric space (''X'', ''d'') are said to be positively separated if the infimum :\inf_ d(a, b) > 0. (Some authors also specify that ''A'' and ''B'' should be disjoint sets; how ...
are sets separated by a nonzero
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
.


Intersections

Disjointness of two sets, or of a family of sets, may be expressed in terms of intersections of pairs of them. Two sets ''A'' and ''B'' are disjoint if and only if their intersection A\cap B is the empty set. It follows from this definition that every set is disjoint from the empty set, and that the empty set is the only set that is disjoint from itself. If a collection contains at least two sets, the condition that the collection is disjoint implies that the intersection of the whole collection is empty. However, a collection of sets may have an empty intersection without being disjoint. Additionally, while a collection of less than two sets is trivially disjoint, as there are no pairs to compare, the intersection of a collection of one set is equal to that set, which may be non-empty. For instance, the three sets have an empty intersection but are not disjoint. In fact, there are no two disjoint sets in this collection. Also the empty family of sets is pairwise disjoint. A
Helly family In combinatorics, a Helly family of order is a family of sets in which every minimal ''subfamily with an empty intersection'' has or fewer sets in it. Equivalently, every finite subfamily such that every -fold intersection is non-empty has non ...
is a system of sets within which the only subfamilies with empty intersections are the ones that are pairwise disjoint. For instance, the
closed interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
s of the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s form a Helly family: if a family of closed intervals has an empty intersection and is minimal (i.e. no subfamily of the family has an empty intersection), it must be pairwise disjoint.


Disjoint unions and partitions

A
partition of a set In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a set defines a partition of this set, and every part ...
''X'' is any collection of mutually disjoint non-empty sets whose
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
is ''X''., p. 28. Every partition can equivalently be described by an equivalence relation, a binary relation that describes whether two elements belong to the same set in the partition.
Disjoint-set data structure In computer science, a disjoint-set data structure, also called a union–find data structure or merge–find set, is a data structure that stores a collection of disjoint (non-overlapping) sets. Equivalently, it stores a partition of a set ...
s and
partition refinement In the design of algorithms, partition refinement is a technique for representing a partition of a set as a data structure that allows the partition to be refined by splitting its sets into a larger number of smaller sets. In that sense it is dual t ...
are two techniques in computer science for efficiently maintaining partitions of a set subject to, respectively, union operations that merge two sets or refinement operations that split one set into two. A
disjoint union In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A ( ...
may mean one of two things. Most simply, it may mean the union of sets that are disjoint. But if two or more sets are not already disjoint, their disjoint union may be formed by modifying the sets to make them disjoint before forming the union of the modified sets. For instance two sets may be made disjoint by replacing each element by an ordered pair of the element and a binary value indicating whether it belongs to the first or second set. For families of more than two sets, one may similarly replace each element by an ordered pair of the element and the index of the set that contains it..


See also

*
Hyperplane separation theorem In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in ''n''-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one ...
for disjoint convex sets *
Mutually exclusive events In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails ...
*
Relatively prime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
, numbers with disjoint sets of prime divisors * Separoid *
Set packing Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set ''S'' and a list of subsets of ''S''. Then, the set packing problem asks ...
, the problem of finding the largest disjoint subfamily of a family of sets


References


External links

* {{DEFAULTSORT:Disjoint Sets Basic concepts in set theory Families of sets