HOME

TheInfoList



OR:

In chemistry, the oxidation state, or oxidation number, is the hypothetical
charge Charge or charged may refer to: Arts, entertainment, and media Films * '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqu ...
of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
(loss of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s) of an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
in a
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge. The oxidation state of an atom does not represent the "real" formal charge on that atom, or any other actual atomic property. This is particularly true of high oxidation states, where the ionization energy required to produce a multiply positive ion is far greater than the energies available in chemical reactions. Additionally, the oxidation states of atoms in a given compound may vary depending on the choice of
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
scale used in their calculation. Thus, the oxidation state of an atom in a compound is purely a formalism. It is nevertheless important in understanding the nomenclature conventions of
inorganic compounds In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemi ...
. Also, several observations regarding chemical reactions may be explained at a basic level in terms of oxidation states. Oxidation states are typically represented by
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s which may be positive, zero, or negative. In some cases, the average oxidation state of an element is a fraction, such as for
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
in
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With th ...
( see below). The highest known oxidation state is reported to be +9, displayed by
iridium Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density of ...
in the tetroxoiridium(IX) cation (). It is predicted that even a +10 oxidation state may be achieved by
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
in tetroxoplatinum(X), . The lowest oxidation state is −5, as for boron in . In inorganic nomenclature, the oxidation state is represented by a
Roman numeral Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, ea ...
placed after the element name inside the parenthesis or as a superscript after the element symbol, e.g. Iron(III) oxide. The term ''oxidation'' was first used by
Antoine Lavoisier Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794),
CNRS (
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
. Much later, it was realized that the substance, upon being oxidized, loses electrons, and the meaning was extended to include other reactions in which electrons are lost, regardless of whether oxygen was involved. The increase in the oxidation state of an atom, through a chemical reaction, is known as oxidation; a decrease in oxidation state is known as a reduction. Such reactions involve the formal transfer of electrons: a net gain in electrons being a reduction, and a net loss of electrons being oxidation. For pure elements, the oxidation state is zero.


IUPAC definition

IUPAC has published a "Comprehensive definition of the term oxidation state (IUPAC Recommendations 2016)". It is a distillation of an
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
technical report "Toward a comprehensive definition of oxidation state" from 2014. The current IUPAC ''
Gold Book The International Union of Pure and Applied Chemistry publishes many books which contain its complete list of definitions. The definitions are divided into seven "colour books": Gold, Green, Blue, Purple, Orange, White, and Red. There is also an e ...
'' definition of oxidation state is: and the term ''oxidation number'' is nearly synonymous. The underlying principle is that the ionic charge is "the oxidation state of an atom, after ionic approximation of its bonds", where ionic approximation means, hypothesizing that all bonds are ionic. Several criteria were considered for the ionic approximation: # Extrapolation of the bond’s polarity; # Assignment of electrons according to the atom’s contribution to the bonding
Molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of findin ...
(MO)/ the electron's allegiance in a LCAO–MO model. In a bond between two different elements, the bond's electrons are assigned to its main atomic contributor/higher electronegativity; in a bond between two atoms of the same element, the electrons are divided equally. This is because most electronegativity scales depend on the atom's bonding state, which makes the assignment of the oxidation state a somewhat circular argument. For example, some scales may turn out unusual oxidation states, such as -6 for
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
in , for Pauling and Mulliken scales. The dipole moments would, sometimes, also turn out abnormal oxidation numbers, such as in CO and NO, which are oriented with their positive end towards oxygen. Therefore, this leaves the atom's contribution to the bonding MO, the atomic-orbital energy, and from quantum-chemical calculations of charges, as the only viable criteria with cogent values for ionic approximation. However, for a simple estimate for the ionic approximation, we can use Allen electronegativities, as only that electronegativity scale is truly independent of the oxidation state, as it relates to the average valence‐electron energy of the free atom:


Determination

While introductory levels of chemistry teaching use
postulate An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
d oxidation states, the IUPAC recommendation and the ''Gold Book'' entry list two entirely general algorithms for the calculation of the oxidation states of elements in chemical compounds.


Simple approach without bonding considerations

Introductory chemistry uses postulates: the oxidation state for an element in a chemical formula is calculated from the overall charge and postulated oxidation states for all the other atoms. A simple example is based on two postulates, # OS = +1 for
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
# OS = −2 for
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
where OS stands for oxidation state. This approach yields correct oxidation states in oxides and hydroxides of any single element, and in acids such as H2SO4 or H2Cr2O7. Its coverage can be extended either by a list of exceptions or by assigning priority to the postulates. The latter works for H2O2 where the priority of rule 1 leaves both oxygens with oxidation state −1. Additional postulates and their ranking may expand the range of compounds to fit a textbook's scope. As an example, one postulatory algorithm from many possible; in a sequence of decreasing priority: # An element in a free form has OS = 0. # In a compound or ion, the sum of the oxidation states equals the total charge of the compound or ion. # Fluorine in compounds has OS = −1; this extends to
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
and
bromine Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table ( halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simi ...
only when not bonded to a lighter halogen, oxygen or nitrogen. #
Group 1 Group 1 may refer to: * Alkali metal, a chemical element classification for Alkali metal * Group 1 (racing), a historic (until 1981) classification for Touring car racing, applied to standard touring cars. Comparable to modern FIA Group N * Group On ...
and group 2 metals in compounds have OS = +1 and +2, respectively. # Hydrogen has OS = +1 but adopts −1 when bonded as a
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride ...
to metals or metalloids. # Oxygen in compounds has OS = −2 but only when not bonded to oxygen (e.g. in peroxides) or fluorine. This set of postulates covers oxidation states of fluorides, chlorides, bromides, oxides, hydroxides, and hydrides of any single element. It covers all
oxoacids An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce ...
of any central atom (and all their fluoro-, chloro-, and bromo-relatives), as well as
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively c ...
of such acids with group 1 and 2 metals. It also covers
iodide An iodide ion is the ion I−. Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine de ...
s, sulfides, and similar simple salts of these metals.


Algorithm of assigning bonds

This algorithm is performed on a
Lewis structure Lewis structures, also known as Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDS), are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons t ...
(a diagram that shows all
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair form ...
s). Oxidation state equals the charge of an atom after each of its heteronuclear bonds has been assigned to the more-
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
partner of the bond ( except when that partner is a reversibly bonded Lewis-acid ligand) and
homonuclear Homonuclear molecules, or homonuclear species, are molecules composed of only one element. Homonuclear molecules may consist of various numbers of atoms. The size of the molecule an element can form depends on the element's properties, and some el ...
bonds have been divided equally: : where each "—" represents an electron pair (either shared between two atoms or solely on one atom), and "OS" is the oxidation state as a numerical variable. After the electrons have been assigned according to the vertical red lines on the formula, the total number of valence electrons that now "belong" to each atom is subtracted from the number ''N'' of valence electrons of the neutral atom (such as 5 for nitrogen in
group 15 A pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") is any of the chemical elements in group 15 of the periodic table. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the ...
) to yield that atom's oxidation state. This example shows the importance of describing the bonding. Its summary formula, HNO3, corresponds to two structural isomers; the peroxynitrous acid in the above figure and the more stable
nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available nitri ...
. With the formula HNO3, the simple approach without bonding considerations yields −2 for all three oxygens and +5 for nitrogen, which is correct for nitric acid. For the peroxynitrous acid, however, the two oxygens in the O–O bond each has OS = −1 and the nitrogen has OS = +3, which requires a structure to understand.
Organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. T ...
s are treated in a similar manner; exemplified here on
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the re ...
s occurring in between CH4 and CO2: : Analogously for transition-metal compounds; on the left has a total of 36 valence electrons (18 pairs to be distributed), and on the right has 66 valence electrons (33 pairs): : A key step is drawing the Lewis structure of the molecule (neutral, cationic, anionic): atom symbols are arranged so that pairs of atoms can be joined by single two-electron bonds as in the molecule (a sort of "skeletal" structure), and the remaining valence electrons are distributed such that sp atoms obtain an
octet Octet may refer to: Music * Octet (music), ensemble consisting of eight instruments or voices, or composition written for such an ensemble ** String octet, a piece of music written for eight string instruments *** Octet (Mendelssohn), 1825 compos ...
(duet for hydrogen) with a priority that increases in proportion with electronegativity. In some cases, this leads to alternative formulae that differ in bond orders (the full set of which is called the resonance formulas). Consider the
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
anion ( with 32 valence electrons; 24 from oxygens, 6 from sulfur, 2 of the anion charge obtained from the implied cation). The bond orders to the terminal oxygens do not affect the oxidation state so long as the oxygens have octets. Already the skeletal structure, top left, yields the correct oxidation states, as does the Lewis structure, top right (one of the resonance formulas): : The bond-order formula at the bottom is closest to the reality of four equivalent oxygens each having a total bond order of 2. That total includes the bond of order to the implied cation and follows the 8 − ''N'' rule requiring that the main-group atom's bond order equals 8 minus ''N'' valence electrons of the neutral atom, enforced with a priority that proportionately increases with electronegativity. This algorithm works equally for molecular cations composed of several atoms. An example is the ammonium cation of 8 valence electrons (5 from nitrogen, 4 from hydrogens, minus 1 electron for the cation's positive charge): : Drawing Lewis structures with electron pairs as dashes emphasizes the essential equivalence of bond pairs and lone pairs when counting electrons and moving bonds onto atoms. Structures drawn with electron dot pairs are of course identical in every way: :


The algorithm's caveat

The algorithm contains a caveat, which concerns rare cases of transition-metal complexes with a type of
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
that is reversibly bonded as a Lewis acid (as an acceptor of the electron pair from the transition metal); termed a "Z-type" ligand in Green's covalent bond classification method. The caveat originates from the simplifying use of electronegativity instead of the MO-based electron allegiance to decide the ionic sign. One early example is the O2S−RhCl(CO)( PPh3)2 complex with SO2 as the reversibly-bonded acceptor ligand (released upon heating). The Rh−S bond is therefore extrapolated ionic against Allen electronegativities of
rhodium Rhodium is a chemical element with the symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring i ...
and sulfur, yielding oxidation state +1 for rhodium: :


Algorithm of summing bond orders

This algorithm works on Lewis structures and bond graphs of extended (non-molecular) solids:


Applied to a Lewis structure

An example of a Lewis structure with no formal charge, : illustrates that, in this algorithm, homonuclear bonds are simply ignored (the bond orders are in blue). Carbon monoxide exemplifies a Lewis structure with
formal charges In chemistry, a formal charge (F.C. or q), in the covalent view of chemical bonding, is the charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electroneg ...
: : To obtain the oxidation states, the formal charges are summed with the bond-order value taken positively at the carbon and negatively at the oxygen. Applied to molecular ions, this algorithm considers the actual location of the formal (ionic) charge, as drawn in the Lewis structure. As an example, summing bond orders in the ammonium cation yields −4 at the nitrogen of formal charge +1, with the two numbers adding to the oxidation state of −3: : The sum of oxidation states in the ion equals its charge (as it equals zero for a neutral molecule). Also in anions, the formal (ionic) charges have to be considered when nonzero. For sulfate this is exemplified with the skeletal or Lewis structures (top), compared with the bond-order formula of all oxygens equivalent and fulfilling the octet and 8 − ''N'' rules (bottom): :


Applied to bond graph

A
bond graph A bond graph is a graphical representation of a physical dynamic system. It allows the conversion of the system into a state-space representation. It is similar to a block diagram or signal-flow graph, with the major difference that the arcs in ...
in
solid-state chemistry Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials, particularly, but not necessarily exclusively of, non-molecular solids. It therefore has a str ...
is a chemical formula of an extended structure, in which direct bonding connectivities are shown. An example is the AuORb3
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as (XIIA2+VIB4+X2−3), known a ...
, the unit cell of which is drawn on the left and the bond graph (with added numerical values) on the right: : We see that the oxygen atom bonds to the six nearest rubidium cations, each of which has 4 bonds to the auride anion. The bond graph summarizes these connectivities. The bond orders (also called bond valences) sum up to oxidation states according to the attached sign of the bond's ionic approximation (there are no formal charges in bond graphs). Determination of oxidation states from a bond graph can be illustrated on
ilmenite Ilmenite is a titanium-iron oxide mineral with the idealized formula . It is a weakly magnetic black or steel-gray solid. Ilmenite is the most important ore of titanium and the main source of titanium dioxide, which is used in paints, printing ...
, FeTiO3. We may ask whether the mineral contains Fe2+ and Ti4+, or Fe3+ and Ti3+. Its crystal structure has each metal atom bonded to six oxygens and each of the equivalent oxygens to two
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
s and two
titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
s, as in the bond graph below. Experimental data show that three metal-oxygen bonds in the octahedron are short and three are long (the metals are off-center). The bond orders (valences), obtained from the bond lengths by the bond valence method, sum up to 2.01 at Fe and 3.99 at Ti; which can be rounded off to oxidation states +2 and +4, respectively: :


Balancing redox

Oxidation states can be useful for balancing chemical equations for oxidation-reduction (or
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
) reactions, because the changes in the oxidized atoms have to be balanced by the changes in the reduced atoms. For example, in the reaction of acetaldehyde with
Tollens' reagent Tollens' reagent (chemical formula Ag(NH3)2OH) is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes. The reagent consists of a solution of silver nit ...
to form acetic acid (shown below), the
carbonyl In organic chemistry, a carbonyl group is a functional group composed of a carbon atom double-bonded to an oxygen atom: C=O. It is common to several classes of organic compounds, as part of many larger functional groups. A compound containi ...
carbon atom changes its oxidation state from +1 to +3 (loses two electrons). This oxidation is balanced by reducing two Ag+ cations to Ag0 (gaining two electrons in total). : An inorganic example is the Bettendorf reaction using SnCl2 to prove the presence of
arsenite In chemistry, an arsenite is a chemical compound containing an arsenic oxyanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. ...
ions in a concentrated HCl extract. When arsenic(III) is present, a brown coloration appears forming a dark precipitate of
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, ...
, according to the following simplified reaction: : 2 As3+ + 3 Sn2+ → 2 As0 + 3 Sn4+ Here three
tin Tin is a chemical element with the symbol Sn (from la, stannum) and atomic number 50. Tin is a silvery-coloured metal. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent, t ...
atoms are oxidized from oxidation state +2 to +4, yielding six electrons that reduce two arsenic atoms from oxidation state +3 to 0. The simple one-line balancing goes as follows: the two redox couples are written down as they react; :As3+ + Sn2+ As0 + Sn4+. One tin is oxidized from oxidation state +2 to +4, a two-electron step, hence 2 is written in front of the two arsenic partners. One arsenic is reduced from +3 to 0, a three-electron step, hence 3 goes in front of the two tin partners. An alternative three-line procedure is to write separately the
half-reaction A half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. ...
s for oxidation and reduction, each balanced with electrons, and then to sum them up such that the electrons cross out. In general, these redox balances (the one-line balance or each half-reaction) need to be checked for the ionic and electron charge sums on both sides of the equation being indeed equal. If they are not equal, suitable ions are added to balance the charges and the non-redox elemental balance.


Appearances


Nominal oxidation states

A nominal oxidation state is a general term with two different definitions: *
Electrochemical Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outc ...
oxidation state represents a molecule or ion in the Latimer diagram or Frost diagram for its redox-active element. An example is the Latimer diagram for sulfur at pH 0 where the electrochemical oxidation state +2 for sulfur puts between S and H2SO3: :: * Systematic oxidation state is chosen from close alternatives as a pedagogical description. An example is the oxidation state of phosphorus in H3PO3 (structurally
diprotic In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
HPO(OH)2) taken nominally as +3, while Allen electronegativities of
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
and
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
suggest +5 by a narrow margin that makes the two alternatives almost equivalent: :: :Both alternative oxidation numbers for phosphorus make chemical sense, depending on which chemical property or reaction is emphasized. By contrast, a calculated alternative, such as the average (+4) does not.


Ambiguous oxidation states

Lewis formulae are rule-based approximations of chemical reality, as are Allen electronegativities. Still, oxidation states may seem ambiguous when their determination is not straightforward. If only an experiment can determine the oxidation state, the rule-based determination is ambiguous (insufficient). There are also truly
dichotomous A dichotomy is a partition of a whole (or a set) into two parts (subsets). In other words, this couple of parts must be * jointly exhaustive: everything must belong to one part or the other, and * mutually exclusive: nothing can belong simult ...
values that are decided arbitrarily.


Oxidation-state determination from resonance formulas

Seemingly ambiguous oxidation states are derived from a set of
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied Periodic function, periodic force (or a Fourier analysis, Fourier component of it) is equal or close to a natural frequency of the system ...
formulas of equal weights for a molecule having heteronuclear bonds where the atom connectivity does not correspond to the number of two-electron bonds dictated by the 8 − ''N'' rule. An example is S2N2 where four resonance formulas featuring one S=N double bond have oxidation states +2 and +4 for the two sulfur atoms, which average to +3 because the two sulfur atoms are equivalent in this square-shaped molecule.


A physical measurement is needed to determine oxidation state

* when a non-innocent
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
is present, of hidden or unexpected redox properties that could otherwise be assigned to the central atom. An example is the
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
dithiolate complex, . * when the redox ambiguity of a central atom and ligand yields dichotomous oxidation states of close stability, thermally induced
tautomerism Tautomers () are structural isomers (constitutional isomers) of chemical compounds that readily interconvert. The chemical reaction interconverting the two is called tautomerization. This conversion commonly results from the relocation of a hyd ...
may result, as exemplified by
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
catecholate, . Assignment of such oxidation states requires spectroscopic, magnetic or structural data. * when the bond order has to be ascertained along with an isolated tandem of a heteronuclear and a homonuclear bond. An example is
thiosulfate Thiosulfate ( IUPAC-recommended spelling; sometimes thiosulphate in British English) is an oxyanion of sulfur with the chemical formula . Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, ...
having two possible oxidation states (bond orders are in blue and formal charges in green): :: :The S–S distance measurement in
thiosulfate Thiosulfate ( IUPAC-recommended spelling; sometimes thiosulphate in British English) is an oxyanion of sulfur with the chemical formula . Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, ...
is needed to reveal that this bond order is very close to 1, as in the formula on the left.


Ambiguous/arbitrary oxidation states

* when the electronegativity difference between two bonded atoms is very small (as in H3PO3). Two almost equivalent pairs of oxidation states, arbitrarily chosen, are obtained for these atoms. * when an electronegative p-block atom forms solely homonuclear bonds, the number of which differs from the number of two-electron bonds suggested by
rules Rule or ruling may refer to: Education * Royal University of Law and Economics (RULE), a university in Cambodia Human activity * The exercise of political or personal control by someone with authority or power * Business rule, a rule pert ...
. Examples are homonuclear finite chains like (the central nitrogen connects two atoms with four two-electron bonds while only three two-electron bonds are required by 8 − ''N'' rule) or (the central iodine connects two atoms with two two-electron bonds while only one two-electron bond fulfills the 8 − ''N'' rule). A sensible approach is to distribute the ionic charge over the two outer atoms. Such a placement of charges in a
polysulfide Polysulfides are a class of chemical compounds containing chains of sulfur atoms. There are two main classes of polysulfides: inorganic and organic. Among the inorganic polysulfides, there are ones which contain anions, which have the general formu ...
(where all inner sulfurs form two bonds, fulfilling the 8 − ''N'' rule) follows already from its Lewis structure. * when the isolated tandem of a heteronuclear and a homonuclear bond leads to a bonding compromise in between two Lewis structures of limiting bond orders. An example is N2O: :: :The typical oxidation state of nitrogen in N2O is +1, which also obtains for both nitrogens by a molecular orbital approach. The formal charges on the right comply with electronegativities, which implies an added ionic bonding contribution. Indeed, the estimated N−N and N−O bond orders are 2.76 and 1.9, respectively, approaching the formula of integer bond orders that would include the ionic contribution explicitly as a bond (in green): :: :Conversely, formal charges against electronegativities in a Lewis structure decrease the bond order of the corresponding bond. An example is
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
with a bond-order estimate of 2.6.


Fractional oxidation states

Fractional oxidation states are often used to represent the average oxidation state of several atoms of the same element in a structure. For example, the formula of
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With th ...
is , implying an average oxidation state for iron of +. However, this average value may not be representative if the atoms are not equivalent. In a crystal below , two-thirds of the cations are and one-third are , and the formula may be more clearly represented as FeO·. Likewise, propane, , has been described as having a carbon oxidation state of −. Again, this is an average value since the structure of the molecule is , with the first and third carbon atoms each having an oxidation state of −3 and the central one −2. An example with true fractional oxidation states for equivalent atoms is potassium
superoxide In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula . The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of t ...
, . The diatomic superoxide ion has an overall charge of −1, so each of its two equivalent oxygen atoms is assigned an oxidation state of −. This ion can be described as a
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied Periodic function, periodic force (or a Fourier analysis, Fourier component of it) is equal or close to a natural frequency of the system ...
hybrid of two Lewis structures, where each oxygen has an oxidation state of 0 in one structure and −1 in the other. For the
cyclopentadienyl anion In chemistry, the cyclopentadienyl anion or cyclopentadienide is an aromatic species with a formula of and abbreviated as Cp−. It is formed from the deprotonation of the molecule cyclopentadiene. Properties The cyclopentadienyl anion i ...
, the oxidation state of C is −1 + − = −. The −1 occurs because each carbon is bonded to one hydrogen atom (a less electronegative element), and the − because the total ionic charge of −1 is divided among five equivalent carbons. Again this can be described as a resonance hybrid of five equivalent structures, each having four carbons with oxidation state −1 and one with −2. : Finally, fractional oxidation numbers are not used in the description of
red lead Red is the color at the long wavelength end of the visible spectrum of light, next to orange and opposite violet. It has a dominant wavelength of approximately 625–740 nanometres. It is a primary color in the RGB color model and a secondar ...
. is represented as lead(II,IV) oxide, showing the oxidation states of the two nonequivalent
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
atoms.


Elements with multiple oxidation states

Most elements have more than one possible oxidation state. For example, carbon has nine possible integer oxidation states from −4 to +4: :


Oxidation state in metals

Many compounds with luster and electrical conductivity maintain a simple
stoichiometric Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equ ...
formula, such as the golden TiO, blue-black RuO2 or coppery ReO3, all of obvious oxidation state. Ultimately, assigning the free metallic electrons to one of the bonded atoms is not comprehensive and can yield unusual oxidation states. Examples are the LiPb and ordered
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductilit ...
s, the composition and structure of which are largely determined by atomic size and packing factors. Should oxidation state be needed for redox balancing, it is best set to 0 for all atoms of such an alloy.


List of oxidation states of the elements

This is a list of known oxidation states of the
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s, excluding nonintegral values. The most common states appear in bold. The table is based on that of Greenwood and Earnshaw, with additions noted. Every element exists in oxidation state 0 when it is the pure non-ionized element in any phase, whether monatomic or polyatomic allotrope. The column for oxidation state 0 only shows elements known to exist in oxidation state 0 in compounds.


Early forms (octet rule)

A figure with a similar format was used by Irving Langmuir in 1919 in one of the early papers about the
octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rul ...
. The periodicity of the oxidation states was one of the pieces of evidence that led Langmuir to adopt the rule. :


Use in nomenclature

The oxidation state in compound naming for
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
s and
lanthanides The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and ytt ...
and
actinides The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
is placed either as a right superscript to the element symbol in a chemical formula, such as FeIII or in parentheses after the name of the element in chemical names, such as iron(III). For example, is named
iron(III) sulfate Iron(III) sulfate (or ferric sulfate), is a family of inorganic compounds with the formula Fe2(SO4)3(H2O)n. A variety of hydrates are known, including the most commonly encountered form of "ferric sulfate". Solutions are used in dyeing as a morda ...
and its formula can be shown as Fe. This is because a sulfate ion has a charge of −2, so each iron atom takes a charge of +3.


History of the oxidation state concept


Early days

Oxidation itself was first studied by
Antoine Lavoisier Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794),
CNRS (
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
(hence the name). The term has since been generalized to imply a ''formal'' loss of electrons. Oxidation states, called ''oxidation grades'' by Friedrich Wöhler in 1835, were one of the intellectual stepping stones that Dmitri Mendeleev used to derive the periodic table. William B. Jensen gives an overview of the history up to 1938.


Use in nomenclature

When it was realized that some metals form two different binary compounds with the same nonmetal, the two compounds were often distinguished by using the ending ''-ic'' for the higher metal oxidation state and the ending ''-ous'' for the lower. For example, FeCl3 is
ferric chloride Iron(III) chloride is the inorganic compound with the formula . Also called ferric chloride, it is a common compound of iron in the +3 oxidation state. The anhydrous compound is a crystalline solid with a melting point of 307.6 °C. The col ...
and FeCl2 is
ferrous chloride Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as ...
. This system is not very satisfactory (although sometimes still used) because different metals have different oxidation states which have to be learned: ferric and ferrous are +3 and +2 respectively, but cupric and cuprous are +2 and +1, and stannic and stannous are +4 and +2. Also, there was no allowance for metals with more than two oxidation states, such as vanadium with oxidation states +2, +3, +4, and +5. This system has been largely replaced by one suggested by Alfred Stock in 1919 and adopted by
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
in 1940. Thus, FeCl2 was written as
iron(II) chloride Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as ...
rather than ferrous chloride. The Roman numeral II at the central atom came to be called the " Stock number" (now an obsolete term), and its value was obtained as a charge at the central atom after removing its ligands along with the electron pairs they shared with it.


Development towards the current concept

The term "oxidation state" in English chemical literature was popularized by
Wendell Mitchell Latimer Wendell Mitchell Latimer (April 22, 1893 – July 6, 1955) was an American chemist notable for his description of oxidation states in his book "The Oxidation States of the Elements and Their Potentials in Aqueous Solution" ( ASIN B000GRXLSA, ...
in his 1938 book about electrochemical potentials. He used it for the value (synonymous with the German term ''Wertigkeit'') previously termed "valence", "polar valence" or "polar number" in English, or "oxidation stage" or indeed the "state of oxidation". Since 1938, the term "oxidation state" has been connected with
electrochemical potential In electrochemistry, the electrochemical potential (ECP), ', is a thermodynamic measure of chemical potential that does not omit the energy contribution of electrostatics. Electrochemical potential is expressed in the unit of J/ mol. Introductio ...
s and electrons exchanged in
redox couple Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
s participating in redox reactions. By 1948, IUPAC used the 1940 nomenclature rules with the term "oxidation state", instead of the original ''valency''. In 1948 Linus Pauling proposed that oxidation number could be determined by extrapolating bonds to being completely ionic in the direction of
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
. A full acceptance of this suggestion was complicated by the fact that the Pauling electronegativities as such depend on the oxidation state and that they may lead to unusual values of oxidation states for some transition metals. In 1990 IUPAC resorted to a postulatory (rule-based) method to determine the oxidation state. This was complemented by the synonymous term oxidation number as a descendant of the Stock number introduced in 1940 into the nomenclature. However, the terminology using " ligands" gave the impression that oxidation number might be something specific to
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as '' ligands'' or complexing agents. ...
es. This situation and the lack of a real single definition generated numerous debates about the meaning of oxidation state, suggestions about methods to obtain it and definitions of it. To resolve the issue, an IUPAC project (2008-040-1-200) was started in 2008 on the "Comprehensive Definition of Oxidation State", and was concluded by two reports and by the revised entries "Oxidation State" and "Oxidation Number" in the
IUPAC Gold Book The International Union of Pure and Applied Chemistry publishes many books which contain its complete list of definitions. The definitions are divided into seven "colour books": Gold, Green, Blue, Purple, Orange, White, and Red. There is also an e ...
. The outcomes were a single definition of oxidation state and two algorithms to calculate it in molecular and extended-solid compounds, guided by Allen electronegativities that are independent of oxidation state.


See also

*
Electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
*
Electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outco ...
*
Atomic orbital In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in an ...
* Atomic shell *
Quantum numbers In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be k ...
**
Azimuthal quantum number The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe ...
**
Principal quantum number In quantum mechanics, the principal quantum number (symbolized ''n'') is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers (from 1) making it a discrete variable. A ...
**
Magnetic quantum number In atomic physics, the magnetic quantum number () is one of the four quantum numbers (the other three being the principal, azimuthal, and spin) which describe the unique quantum state of an electron. The magnetic quantum number distinguishes the ...
** Spin quantum number * Aufbau principle ** Wiswesser's rule * Ionization energy *
Electron affinity The electron affinity (''E''ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. ::X(g) + e− → X−(g) + energy Note that this is ...
*
Ionic potential Ionic potential is the ratio of the electrical charge (''z'') to the radius (''r'') of an ion. \text = \frac = \frac As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger ...
*
Ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
**
Cations An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by con ...
and
Anions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
** Polyatomic ions *
Covalent bonding A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
*
Metallic bonding Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be des ...
* Hybridization


References

{{Oxide Chemical nomenclature Chemical properties Coordination chemistry Dimensionless numbers of chemistry Redox