organ of Corti
   HOME

TheInfoList



OR:

The organ of Corti, or spiral organ, is the receptor organ for hearing and is located in the mammalian
cochlea The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus (cochlea), modiolus. A core component of the cochlea is the organ of Cort ...
. This highly varied strip of epithelial cells allows for transduction of auditory signals into nerve impulses'
action potential An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
. Transduction occurs through vibrations of structures in the inner ear causing displacement of cochlear fluid and movement of hair cells at the organ of Corti to produce electrochemical signals.The Ear
Pujol, R., Irving, S., 2013
Italian anatomist Alfonso Giacomo Gaspare Corti (1822–1876) discovered the organ of Corti in 1851. The structure evolved from the basilar papilla and is crucial for
mechanotransduction In cellular biology, mechanotransduction ('' mechano'' + '' transduction'') is any of various mechanisms by which cells convert mechanical stimulus into electrochemical activity. This form of sensory transduction is responsible for a number o ...
in mammals.


Structure

The organ of Corti is located in the scala media of the
cochlea The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus (cochlea), modiolus. A core component of the cochlea is the organ of Cort ...
of the
inner ear The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the ...
between the vestibular duct and the
tympanic duct The tympanic duct or scala tympani is one of the perilymph-filled cavities in the inner ear of humans. It is separated from the cochlear duct by the basilar membrane, and it extends from the round window to the helicotrema, where it continues ...
and is composed of mechanosensory cells, known as hair cells. Strategically positioned on the
basilar membrane The basilar membrane is a stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes that run along the coil of the cochlea, the scala media and the scala tympani. The basilar membrane moves up and down ...
of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells (IHCs). Surrounding these hair cells are supporting cells:
Deiters cell Deiters' cells, also known as outer phalangeal cells or cells of Deiters (), are a cell type found within the inner ear. They contain both microfilaments and microtubules which run from the basilar membrane to the reticular membrane of the inner ...
s, also called phalangeal cells, which have a close relation with the OHCs, and pillar cells, which separate and support both the OHCs and the IHCs. Projecting from the tops of the hair cells are tiny finger-like projections called stereocilia, which are arranged in a graduated fashion with the shortest stereocilia on the outer rows and the longest in the center. This gradation is thought to be the most important anatomic feature of the organ of Corti because this allows the sensory cells superior tuning capability. If the cochlea were uncoiled, it would roll out to be about 33 mm long in women and 34 mm in men, with about 2.28 mm of standard deviation for the population. The cochlea is also tonotopically organized, meaning that different frequencies of sound waves interact with different locations on the structure. The base of the cochlea, closest to the outer ear, is the most stiff and narrow and is where the high-frequency sounds are transduced. The apex, or top, of the cochlea is wider and much more flexible and loose and functions as the transduction site for low-frequency sounds.


Function

The function of the organ of Corti is to convert ( transduce) sounds into electrical signals that can be transmitted to the brainstem through the auditory nerve. It is the auricle and
middle ear The middle ear is the portion of the ear medial to the eardrum, and distal to the oval window of the cochlea (of the inner ear). The mammalian middle ear contains three ossicles (malleus, incus, and stapes), which transfer the vibrations ...
that act as mechanical transformers and amplifiers so that the sound waves end up with amplitudes 22 times greater than when they entered the ear.


Auditory transduction

In normal hearing, the majority of the auditory signals that reach the organ of Corti in the first place come from the outer ear. Sound waves enter through the auditory canal and vibrate the
tympanic membrane In the anatomy of humans and various other tetrapods, the eardrum, also called the tympanic membrane or myringa, is a thin, cone-shaped membrane that separates the external ear from the middle ear. Its function is to transmit changes in pressur ...
, also known as the eardrum, which vibrates three small bones called the
ossicles The ossicles (also called auditory ossicles) are three irregular bones in the middle ear of humans and other mammals, and are among the smallest bones in the human body. Although the term "ossicle" literally means "tiny bone" (from Latin ''ossi ...
. As a result, the attached oval window moves and causes movement of the round window, which leads to displacement of the cochlear fluid. However, the stimulation can happen also via direct vibration of the cochlea from the skull. The latter is referred to as Bone Conduction (or BC) hearing, as complementary to the first one described, which is instead called Air Conduction (or AC) hearing. Both AC and BC stimulate the basilar membrane in the same way (Békésy, G.v., Experiments in Hearing. 1960). The basilar membrane on the tympanic duct presses against the hair cells of the organ as perilymphatic pressure waves pass. The stereocilia atop the IHCs move with this fluid displacement and in response their
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
, or positive ion selective, channels are pulled open by
cadherin Cadherins (named for "calcium-dependent adhesion") are cell adhesion molecules important in forming adherens junctions that let cells adhere to each other. Cadherins are a class of type-1 transmembrane proteins, and they depend on calcium (Ca2+) ...
structures called tip links that connect adjacent stereocilia. The organ of Corti, surrounded in potassium-rich fluid
endolymph Endolymph is the fluid contained in the membranous labyrinth of the inner ear. The major cation in endolymph is potassium, with the values of sodium and potassium concentration in the endolymph being 0.91  mM and 154  mM, respectively. ...
, lies on the
basilar membrane The basilar membrane is a stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes that run along the coil of the cochlea, the scala media and the scala tympani. The basilar membrane moves up and down ...
at the base of the scala media. Under the organ of Corti is the scala tympani and above it, the scala vestibuli. Both structures exist in a low potassium fluid called perilymph. Because those stereocilia are in the midst of a high concentration of potassium, once their cation channels are pulled open, potassium ions as well as calcium ions flow into the top of the hair cell. With this influx of positive ions the IHC becomes depolarized, opening voltage-gated calcium channels at the basolateral region of the hair cells and triggering the release of the neurotransmitter
glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
. An electrical signal is then sent through the auditory nerve and into the
auditory cortex The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates. It is a part of the auditory system, performing basic and higher functions in hearing, such as possible relations to ...
of the brain as a neural message.


Cochlear amplification

The organ of Corti is also capable of modulating the auditory signal. The outer hair cells (OHCs) can amplify the signal through a process called electromotility where they increase movement of the basilar and tectorial membranes and therefore increase deflection of stereocilia in the IHCs. A crucial piece to this cochlear amplification is the motor protein prestin, which changes shape based on the voltage potential inside of the hair cell. When the cell is depolarized, prestin shortens, and because it is located on the membrane of OHCs it then pulls on the basilar membrane and increasing how much the membrane is deflected, creating a more intense effect on the inner hair cells (IHCs). When the cell hyperpolarizes prestin lengthens and eases tension on the IHCs, which decreases the neural impulses to the brain. In this way, the hair cell itself is able to modify the auditory signal before it even reaches the brain.


Development

The organ of Corti, in between the scala tympani and the scala media, develops after the formation and growth of the cochlear duct. The inner and outer hair cells then differentiate into their appropriate positions and are followed by the organization of the supporting cells. The topology of the supporting cells lends itself to the actual mechanical properties that are needed for the highly specialized sound-induced movements within the organ of Corti. Development and growth of the organ of Corti relies on specific genes, many of which have been identified in previous research ( SOX2, GATA3, EYA1, FOXG1, BMP4, RAC1, and more), to undergo such differentiation. Specifically, the cochlear duct growth and the formation of hair cells within the organ of Corti. Mutations in the genes expressed in or near the organ of Corti before the differentiation of hair cells will result in a disruption in the differentiation, and potential malfunction of, the organ of Corti.


Clinical significance


Hearing loss

The organ of Corti can be damaged by excessive sound levels, leading to noise-induced impairment. The most common kind of hearing impairment,
sensorineural hearing loss Sensorineural hearing loss (SNHL) is a type of hearing loss in which the root cause lies in the inner ear, sensory organ (cochlea and associated structures), or the vestibulocochlear nerve (Cranial nerves, cranial nerve VIII). SNHL accounts for a ...
, includes as one major cause the reduction of function in the organ of Corti. Specifically, the active amplification function of the outer hair cells is very sensitive to damage from exposure to trauma from overly-loud sounds or to certain ototoxic drugs. Once outer hair cells are damaged, they do not regenerate, and the result is a loss of sensitivity and an abnormally large growth of loudness (known as ''recruitment'') in the part of the spectrum that the damaged cells serve. While hearing loss has always been considered irreversible in mammals, fish and birds routinely repair such damage. A 2013 study has shown that the use of particular drugs may reactivate genes normally expressed only during hair cell development. The research was carried out at
Harvard Medical School Harvard Medical School (HMS) is the medical school of Harvard University and is located in the Longwood Medical and Academic Area, Longwood Medical Area in Boston, Massachusetts. Founded in 1782, HMS is the third oldest medical school in the Un ...
, Massachusetts Eye and Ear, and the Keio University School of Medicine in Japan.


Additional images

File:Gray903.png, Transverse section of the cochlear duct of a fetal cat. File:Gray928.png, Diagrammatic longitudinal section of the cochlea File:Gray929.png, Floor of ductus cochlearis File:Gray930.png, Limbus laminæ spiralis and membrana basilaris File:Gray931.png, Section through the spiral organ of Corti (magnified)


Notes


References

* * History. (n.d.). * * * *Nicholls, J. G., Martin, A. R., Fuchs, P. A., Brown, D. A., Diamond, M. E., & Weisblat, D. A. (2012). From Neuron to Brain (5th ed., pp. 456–459). Sunderland, MA: Sinauer Associates, Inc. *Pritchard U. "On the organ of Corti in mammals". 2 March 1876, '' Proceedings of the Royal Society of London, volume 24, pp. 346–52 *Pujol, R., & Irving, S. (2013). The Ear.


External links


Organ of Corti 3D animation
* http://lobe.ibme.utoronto.ca/presentations/OHC_Electromotility/sld005.htm Diagram at University of Toronto * http://mayoresearch.mayo.edu/mayo/research/ent_research/images/image02.gif Diagram at Mayo * http://www.iurc.montp.inserm.fr/cric51/audition/english/corti/fcorti.htm at University of Montpellier 1


See also

*
Hearing Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is auditory sci ...
*
Inner ear The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the ...
* List of distinct cell types in the adult human body {{Authority control Auditory system Ear Otology Audiology