HOME

TheInfoList



OR:

The orbital plane of a revolving body is the geometric plane in which its
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
lies. Three non-
collinear In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned o ...
points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) and of an orbiting celestial body at two different times/points of its orbit. The orbital plane is defined in relation to a reference plane by two parameters:
inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Ea ...
(''i'') and
longitude of the ascending node The longitude of the ascending node (☊ or Ω) is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a specified reference direction, called the '' origin of longitude'', to the direction of the a ...
(Ω). By definition, the reference plane for the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
is usually considered to be
Earth's orbit Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes  days (1 sidereal year), during which time Earth ...
al plane, which defines the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
, the circular path on the
celestial sphere In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphe ...
that the Sun appears to follow over the course of a year. In other cases, for instance a
moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
or artificial
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioiso ...
orbiting another planet, it is convenient to define the inclination of the Moon's orbit as the angle between its orbital plane and the planet's equatorial plane.


Artificial satellites around the Earth

For launch vehicles and artificial satellites, the orbital plane is a defining parameter of an orbit; as in general, it will take a very large amount of
propellant A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or other motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the ...
to change the orbital plane of an object. Other parameters, such as the
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting pla ...
, the eccentricity of the orbit and the phase of the orbit are more easily changed by propulsion systems. Orbital planes of satellites are perturbed by the non-spherical nature of the
Earth's gravity The gravity of Earth, denoted by , is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector qua ...
. This causes the orbital plane of the satellite's orbit to slowly rotate around the Earth, depending on the angle the plane makes with the Earth's equator. For planes that are at a critical angle this can mean that the plane will track the Sun around the Earth, forming a
Sun-synchronous orbit A Sun-synchronous orbit (SSO), also called a heliosynchronous orbit, is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time. More technically, it is ...
. A launch vehicle's
launch window In the context of spaceflight, launch period is the collection of days and launch window is the time period on a given day during which a particular rocket must be launched in order to reach its intended target. If the rocket is not launched wi ...
is usually determined by the times when the target orbital plane intersects the launch site.


See also

*
Earth-centered inertial Earth-centered inertial (ECI) coordinate frames have their origins at the center of mass of Earth and are fixed with respect to the stars. "I" in "ECI" stands for inertial (i.e. "not accelerating"), in contrast to the "Earth-centered - Earth- ...
coordinate system * ECEF, Earth-Centered Earth-fixed coordinate system *
Invariable plane The invariable plane of a planetary system, also called Laplace's invariable plane, is the plane passing through its barycenter (center of mass) perpendicular to its angular momentum vector. In the Solar System, about 98% of this effect is con ...
, a weighted average of all orbital planes in a system *
Orbital elements Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same ...
*
Orbital state vectors In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position (\mathbf) and velocity (\mathbf) that together with their time (epoch) (t) uniquely determine the trajector ...


References

* {{DEFAULTSORT:Orbital Plane (Astronomy) Plane Planes