HOME

TheInfoList



OR:

The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
around another object. In
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
, it usually applies to
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s or asteroids orbiting the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
,
moons A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are often colloquially referred to as ''moons'' ...
orbiting planets, exoplanets orbiting other stars, or binary stars. For celestial objects in general, the sidereal period ( sidereal year) is referred to by the orbital period, determined by a 360° revolution of one body around its primary, e.g. Earth around the Sun, relative to the fixed stars projected in the sky. Orbital periods can be defined in several ways. The tropical period is more particularly about the position of the parent star. It is the basis for the
solar year A tropical year or solar year (or tropical period) is the time that the Sun takes to return to the same position in the sky of a celestial body of the Solar System such as the Earth, completing a full cycle of seasons; for example, the time f ...
, and respectively the calendar year. The synodic period incorporates not only the orbital relation to the parent star, but also to other celestial objects, making it not a mere different approach to the orbit of an object around its parent, but a period of orbital relations with other objects, normally Earth and their orbits around the Sun. It applies to the elapsed time where planets return to the same kind of phenomena or location, such as when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun. For example,
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months. Periods in astronomy are conveniently expressed in various units of time, often in hours, days, or years. They can be also defined under different specific astronomical definitions that are mostly caused by the small complex external gravitational influences of other celestial objects. Such variations also include the true placement of the centre of gravity between two astronomical bodies (
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
), perturbations by other planets or bodies,
orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationsh ...
,
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, etc. Most are investigated by detailed complex astronomical theories using celestial mechanics using precise positional observations of celestial objects via astrometry.


Related periods

There are many periods related to the orbits of objects, each of which are often used in the various fields of
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
and astrophysics, particularly they must not be confused with other revolving periods like
rotational period The rotation period of a celestial object (e.g., star, gas giant, planet, moon, asteroid) may refer to its sidereal rotation period, i.e. the time that the object takes to complete a single revolution around its axis of rotation relative to the b ...
s. Examples of some of the common orbital ones include the following: * The sidereal period is the amount of time that it takes an object to make a full orbit, relative to the fixed stars, the sidereal year. This is the orbital period in an inertial (non-rotating) frame of reference. * The synodic period is the amount of time that it takes for an object to reappear at the same point in relation to two or more other objects. In common usage, these two objects are typically Earth and the Sun. The time between two successive oppositions or two successive conjunctions is also equal to the synodic period. For celestial bodies in the solar system, the synodic period (with respect to Earth and the Sun) differs from the tropical period owing to Earth's motion around the Sun. For example, the synodic period of the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
's orbit as seen from
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, relative to the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, is 29.5 mean solar days, since the Moon's phase and position relative to the Sun and Earth repeats after this period. This is longer than the sidereal period of its orbit around Earth, which is 27.3 mean solar days, owing to the motion of Earth around the Sun. * The draconitic period (also draconic period or
nodal period The nodal period (or draconic period) of a satellite is the time interval between successive passages of the satellite through either of its orbital nodes, typically the ascending node. This type of orbital period applies to artificial satellites, ...
), is the time that elapses between two passages of the object through its
ascending node An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes. Planes of reference Common planes of refere ...
, the point of its orbit where it crosses the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
from the southern to the northern hemisphere. This period differs from the sidereal period because both the orbital plane of the object and the plane of the ecliptic precess with respect to the fixed stars, so their intersection, the
line of nodes An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes. Planes of reference Common planes of refere ...
, also precesses with respect to the fixed stars. Although the plane of the ecliptic is often held fixed at the position it occupied at a specific epoch, the orbital plane of the object still precesses, causing the draconitic period to differ from the sidereal period. * The anomalistic period is the time that elapses between two passages of an object at its
periapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
(in the case of the planets in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
, called the
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
), the point of its closest approach to the attracting body. It differs from the sidereal period because the object's semi-major axis typically advances slowly. * Also, the tropical period of Earth (a
tropical year A tropical year or solar year (or tropical period) is the time that the Sun takes to return to the same position in the sky of a celestial body of the Solar System such as the Earth, completing a full cycle of seasons; for example, the time f ...
) is the interval between two alignments of its rotational axis with the Sun, also viewed as two passages of the object at a right ascension of 0 hr. One Earth year is slightly shorter than the period for the Sun to complete one circuit along the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
(a sidereal year) because the inclined axis and
equatorial plane The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. This plane of reference bases the equatorial coordinate system. In other words, the celestial equator is an abstract projecti ...
slowly
precess Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In othe ...
(rotate with respect to reference stars), realigning with the Sun before the orbit completes. This cycle of axial precession for Earth, known as ''precession of the equinoxes'', recurs roughly every 25,772 years.


Small body orbiting a central body

According to
Kepler's Third Law In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbi ...
, the orbital period ''T'' of two point masses orbiting each other in a circular or
elliptic orbit In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, i ...
is: :T = 2\pi\sqrt where: * ''a'' is the orbit's semi-major axis * ''μ'' = ''GM'' is the standard gravitational parameter ** ''G'' is the gravitational constant, ** ''M'' is the mass of the more massive body. For all ellipses with a given semi-major axis the orbital period is the same, regardless of eccentricity. Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period: :a = \sqrt /math> where * ''a'' is the orbit's semi-major axis, * ''G'' is the gravitational constant, * ''M'' is the mass of the more massive body, * ''T'' is the orbital period. For instance, for completing an orbit every 24  hours around a mass of 100  kg, a small body has to orbit at a distance of 1.08  meters from the central body's center of mass. In the special case of perfectly circular orbits, the orbital velocity is constant and equal (in m/s) to : v_\text = \sqrt where: * ''r'' is the circular orbit's radius in meters, * ''G'' is the gravitational constant, * ''M'' is the mass of the central body. This corresponds to times (≈ 0.707 times) the
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
.


Effect of central body's density

For a perfect sphere of uniform
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
, it is possible to rewrite the first equation without measuring the mass as: :T = \sqrt where: * ''r'' is the sphere's radius * ''a'' is the orbit's semi-major axis in metres, * ''G'' is the gravitational constant, * ''ρ'' is the density of the sphere in kilograms per cubic metre. For instance, a small body in circular orbit 10.5 cm above the surface of a sphere of
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
half a metre in radius would travel at slightly more than 1 mm/ s, completing an orbit every hour. If the same sphere were made of
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
the small body would need to orbit just 6.7 mm above the surface for sustaining the same orbital period. When a very small body is in a circular orbit barely above the surface of a sphere of any radius and mean density ''ρ'' (in kg/m3), the above equation simplifies to (since ) :T = \sqrt Thus the orbital period in low orbit depends only on the density of the central body, regardless of its size. So, for the Earth as the central body (or any other spherically symmetric body with the same mean density, about 5,515 kg/m3, e.g. Mercury with 5,427 kg/m3 and
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
with 5,243 kg/m3) we get: :''T'' = 1.41 hours and for a body made of water (''ρ'' ≈ 1,000 kg/m3), or bodies with a similar density, e.g. Saturn's moons Iapetus with 1,088 kg/m3 and Tethys with 984 kg/m3 we get: :''T'' = 3.30 hours Thus, as an alternative for using a very small number like ''G'', the strength of universal gravity can be described using some reference material, such as water: the orbital period for an orbit just above the surface of a spherical body of water is 3 hours and 18 minutes. Conversely, this can be used as a kind of "universal"
unit of time A unit of time is any particular time interval, used as a standard way of measuring or expressing duration. The base unit of time in the International System of Units (SI) and by extension most of the Western world, is the second, defined as a ...
if we have a unit of mass, a unit of length, and a unit of density.


Two bodies orbiting each other

In celestial mechanics, when both orbiting bodies' masses have to be taken into account, the orbital period ''T'' can be calculated as follows: :T= 2\pi\sqrt where: * ''a'' is the sum of the semi-major axes of the ellipses in which the centers of the bodies move, or equivalently, the semi-major axis of the ellipse in which one body moves, in the frame of reference with the other body at the origin (which is equal to their constant separation for circular orbits), * ''M''1 + ''M''2 is the sum of the masses of the two bodies, * ''G'' is the gravitational constant. Note that the orbital period is independent of size: for a scale model it would be the same, when densities are the same, as ''M'' scales linearly with ''a''3 (see also ). In a parabolic or hyperbolic trajectory, the motion is not periodic, and the duration of the full trajectory is infinite.


Synodic period

One of the observable characteristics of two bodies which orbit a third body in different orbits, and thus have different orbital periods, is their synodic period, which is the time between conjunctions. An example of this related period description is the repeated cycles for celestial bodies as observed from the Earth's surface, the synodic period, applying to the elapsed time where planets return to the same kind of phenomenon or location. For example, when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun. For example,
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months. If the orbital periods of the two bodies around the third are called ''T''1 and ''T''2, so that ''T''1 < ''T''2, their synodic period is given by: :\frac = \frac - \frac


Examples of sidereal and synodic periods

Table of synodic periods in the Solar System, relative to Earth: In the case of a planet's
moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
, the synodic period usually means the Sun-synodic period, namely, the time it takes the moon to complete its illumination phases, completing the solar phases for an astronomer on the planet's surface. The Earth's motion does not determine this value for other planets because an Earth observer is not orbited by the moons in question. For example, Deimos's synodic period is 1.2648 days, 0.18% longer than Deimos's sidereal period of 1.2624 d.


Synodic periods relative to other planets

The concept of synodic period applies not just to the Earth, but also to other planets as well, and the formula for computation is the same as the one given above. Here is a table which lists the synodic periods of some planets relative to each other:


Binary stars


See also

* Geosynchronous orbit derivation * Rotation period – time that it takes to complete one revolution around its axis of rotation * Satellite revisit period * Sidereal time * Sidereal year * Opposition (astronomy) * List of periodic comets


Notes


Bibliography

*


External links

{{DEFAULTSORT:Orbital Period Time in astronomy
Period Period may refer to: Common uses * Era, a length or span of time * Full stop (or period), a punctuation mark Arts, entertainment, and media * Period (music), a concept in musical composition * Periodic sentence (or rhetorical period), a concept ...