HOME

TheInfoList



OR:

Nylon is a generic designation for a family of synthetic polymers composed of polyamides ( repeating units linked by amide links).The polyamides may be aliphatic or semi-aromatic. Nylon is a
silk Silk is a natural protein fiber, some forms of which can be woven into textiles. The protein fiber of silk is composed mainly of fibroin and is produced by certain insect larvae to form cocoons. The best-known silk is obtained from the ...
-like
thermoplastic A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
, generally made from
petroleum Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crud ...
, that can be melt-processed into fibers, films, or shapes. Nylon polymers can be mixed with a wide variety of additives to achieve many property variations. Nylon polymers have found significant commercial applications in fabric and fibers (apparel, flooring and rubber reinforcement), in shapes (molded parts for cars, electrical equipment, etc.), and in films (mostly for food packaging).


History


DuPont and the invention of nylon

Researchers at DuPont began developing cellulose based fibers, culminating in the synthetic fiber rayon. DuPont's experience with rayon was an important precursor to its development and marketing of nylon. DuPont's invention of nylon spanned an eleven-year period, ranging from the initial research program in polymers in 1927 to its announcement in 1938, shortly before the opening of the 1939 New York World's Fair. The project grew from a new organizational structure at DuPont, suggested by Charles Stine in 1927, in which the chemical department would be composed of several small research teams that would focus on "pioneering research" in chemistry and would "lead to practical applications". Harvard instructor Wallace Hume Carothers was hired to direct the polymer research group. Initially he was allowed to focus on pure research, building on and testing the theories of German chemist Hermann Staudinger. He was very successful, as research he undertook greatly improved the knowledge of polymers and contributed to science. Nylon was the first commercially successful synthetic
thermoplastic A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
polymer. DuPont began its research project in 1927. The first nylon,
nylon 66 Nylon 66 (loosely written nylon 6-6, nylon 6/6, nylon 6,6, or nylon 6:6) is a type of polyamide or nylon. It, and nylon 6, are the two most common for textile and plastic industries. Nylon 66 is made of two monomers each containing 6 carbon atoms, ...
, was synthesized on February 28, 1935, by Wallace Hume Carothers at DuPont's research facility at the DuPont Experimental Station. In response to Carothers' work, Paul Schlack at IG Farben developed nylon 6, a different molecule based on caprolactam, on January 29, 1938. Nylon was first used commercially in a nylon- bristled toothbrush in 1938, followed more famously in women's
stocking Stockings (also known as hose, especially in a historical context) are close-fitting, variously elastic garments covering the leg from the foot up to the knee or possibly part or all of the thigh. Stockings vary in color, design, and transpare ...
s or "nylons" which were shown at the 1939 New York World's Fair and first sold commercially in 1940, whereupon they became an instant commercial success with 64 million pairs sold during their first year on the market. During World War II, almost all nylon production was diverted to the military for use in
parachutes A parachute is a device used to slow the motion of an object through an atmosphere by creating drag or, in a ram-air parachute, aerodynamic lift. A major application is to support people, for recreation or as a safety device for aviators, who ...
and
parachute cord Parachute cord (also paracord or 550 cord when referring to type-III paracord) is a lightweight nylon kernmantle rope originally used in the suspension lines of parachutes. This cord is now used as a general purpose utility cord. This versati ...
. Wartime uses of nylon and other plastics greatly increased the market for the new materials. In the spring of 1930, Carothers and his team had already synthesized two new polymers. One was neoprene, a synthetic rubber greatly used during World War II. The other was a white elastic but strong paste that would later become nylon. After these discoveries, Carothers' team was made to shift its research from a more pure research approach investigating general polymerization to a more practically focused goal of finding "one chemical combination that would lend itself to industrial applications". It was not until the beginning of 1935 that a polymer called "polymer 6-6" was finally produced. Carothers' coworker,
Washington University Washington University in St. Louis (WashU or WUSTL) is a private research university with its main campus in St. Louis County, and Clayton, Missouri. Founded in 1853, the university is named after George Washington. Washington University is r ...
alumnus Julian W. Hill had used a cold drawing method to produce a polyester in 1930. This cold drawing method was later used by Carothers in 1935 to fully develop nylon. The first example of nylon (nylon 6.6) was produced on February 28, 1935, at DuPont's research facility at the DuPont Experimental Station. It had all the desired properties of elasticity and strength. However, it also required a complex manufacturing process that would become the basis of industrial production in the future. DuPont obtained a patent for the polymer in September 1938, and quickly achieved a monopoly of the fiber. Carothers died 16 months before the announcement of nylon, therefore he was never able to see his success. The production of nylon required interdepartmental collaboration between three departments at DuPont: the Department of Chemical Research, the Ammonia Department, and the Department of Rayon. Some of the key ingredients of nylon had to be produced using high pressure chemistry, the main area of expertise of the Ammonia Department. Nylon was considered a "godsend to the Ammonia Department", which had been in financial difficulties. The reactants of nylon soon constituted half of the Ammonia Department's sales and helped them come out of the period of the Great Depression by creating jobs and revenue at DuPont. DuPont's nylon project demonstrated the importance of
chemical engineering Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials int ...
in industry, helped create jobs, and furthered the advancement of chemical engineering techniques. In fact, it developed a chemical plant that provided 1800 jobs and used the latest technologies of the time, which are still used as a model for chemical plants today. The ability to acquire a large number of chemists and engineers quickly was a huge contribution to the success of DuPont's nylon project. The first nylon plant was located at Seaford, Delaware, beginning commercial production on December 15, 1939. On October 26, 1995, the Seaford plant was designated a National Historic Chemical Landmark by the American Chemical Society.


Early marketing strategies

An important part of nylon's popularity stems from DuPont's marketing strategy. DuPont promoted the fiber to increase demand before the product was available to the general market. Nylon's commercial announcement occurred on October 27, 1938, at the final session of the '' Herald Tribune''s yearly "Forum on Current Problems", on the site of the approaching New York City world's fair. The "first man-made organic textile fiber" which was derived from "coal, water and air" and promised to be "as strong as steel, as fine as the spider's web" was received enthusiastically by the audience, many of them middle-class women, and made the headlines of most newspapers. Nylon was introduced as part of "The world of tomorrow" at the 1939 New York World's Fair and was featured at DuPont's "Wonder World of Chemistry" at the
Golden Gate International Exposition The Golden Gate International Exposition (GGIE) (1939 and 1940), held at San Francisco's Treasure Island, was a World's Fair celebrating, among other things, the city's two newly built bridges. The San Francisco–Oakland Bay Bridge opened in 1936 ...
in San Francisco in 1939. Actual nylon stockings were not shipped to selected stores in the national market until May 15, 1940. However, a limited number were released for sale in Delaware before that. The first public sale of nylon stockings occurred on October 24, 1939, in Wilmington, Delaware. 4,000 pairs of stockings were available, all of which were sold within three hours. Another added bonus to the campaign was that it meant reducing silk imports from Japan, an argument that won over many wary customers. Nylon was even mentioned by President Roosevelt's cabinet, which addressed its "vast and interesting economic possibilities" five days after the material was formally announced. However, the early excitement over nylon also caused problems. It fueled unreasonable expectations that nylon would be better than silk, a miracle fabric as strong as steel that would last forever and never run. Realizing the danger of claims such as "New Hosiery Held Strong as Steel" and "No More Runs", DuPont scaled back the terms of the original announcement, especially those stating that nylon would possess the strength of steel. Also, DuPont executives marketing nylon as a revolutionary man-made material did not at first realize that some consumers experienced a sense of unease and distrust, even fear, towards synthetic fabrics. A particularly damaging news story, drawing on DuPont's 1938 patent for the new polymer, suggested that one method of producing nylon might be to use cadaverine (pentamethylenediamine), a chemical extracted from corpses. Although scientists asserted that cadaverine was also extracted by heating coal, the public often refused to listen. A woman confronted one of the lead scientists at DuPont and refused to accept that the rumour was not true. DuPont changed its campaign strategy, emphasizing that nylon was made from "coal, air and water", and started focusing on the personal and aesthetic aspects of nylon, rather than its intrinsic qualities. Nylon was thus domesticated, and attention shifted to the material and consumer aspect of the fiber with slogans like "If it's nylon, it's prettier, and oh! How fast it dries!".


Production of nylon fabric

After nylon's nationwide release in 1940, production was increased. 1300 tons of the fabric were produced during 1940. During their first year on the market, 64 million pairs of nylon stockings were sold. In 1941, a second plant was opened in
Martinsville, Virginia Martinsville is an independent city in the Commonwealth of Virginia in the United States. As of the 2020 census, the population was 13,485. A community of both Southside and Southwest Virginia, it is the county seat of Henry County, althou ...
, due to the success of the fabric. While nylon was marketed as the durable and indestructible material of the people, it was sold at almost twice the price of
silk Silk is a natural protein fiber, some forms of which can be woven into textiles. The protein fiber of silk is composed mainly of fibroin and is produced by certain insect larvae to form cocoons. The best-known silk is obtained from the ...
stockings ($4.27 per pound of nylon versus $2.79 per pound of silk). Sales of nylon stockings were strong in part due to changes in women's fashion. As Lauren Olds explains: "by 1939 emlineshad inched back up to the knee, closing the decade just as it started off". The shorter skirts were accompanied by a demand for stockings that offered fuller coverage without the use of garters to hold them up. However, as of February 11, 1942, nylon production was redirected from being a consumer material to one used by the military. DuPont's production of nylon stockings and other lingerie stopped, and most manufactured nylon was used to make parachutes and tents for
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposing ...
. Although nylon stockings already made before the war could be purchased, they were generally sold on the black market for as high as $20. Once the war ended, the return of nylon was awaited with great anticipation. Although DuPont projected yearly production of 360 million pairs of stockings, there were delays in converting back to consumer rather than wartime production. In 1946, the demand for nylon stockings could not be satisfied, which led to the
Nylon riots The nylon riots were a series of disturbances at American stores created by a nylon stocking shortage. Background Nylon was first introduced by DuPont around 1939 and was in extremely high demand in the United States, with up to 4 million pairs of ...
. In one instance, an estimated 40,000 people lined up in Pittsburgh to buy 13,000 pairs of nylons. In the meantime, women cut up nylon tents and parachutes left from the war in order to make blouses and wedding dresses. Between the end of the war and 1952, production of stockings and lingerie used 80% of the world's nylon. DuPont put focus on catering to the civilian demand, and continually expanded its production.


Introduction of nylon blends

As pure nylon hosiery was sold in a wider market, problems became apparent. Nylon stockings were found to be fragile, in the sense that the thread often tended to unravel lengthwise, creating 'runs'. People also reported that pure nylon textiles could be uncomfortable due to nylon's lack of absorbency. Moisture stayed inside the fabric near the skin under hot or moist conditions instead of being "wicked" away. Nylon fabric could also be itchy, and tended to cling and sometimes spark as a result of static electrical charge built up by friction. Also, under some conditions, stockings could decompose turning back into nylon's original components of air, coal, and water. Scientists explained this as a result of air pollution, attributing it to London smog in 1952, as well as poor air quality in New York and Los Angeles. The solution found to problems with pure nylon fabric was to blend nylon with other existing fibers or polymers such as
cotton Cotton is a soft, fluffy staple fiber that grows in a boll, or protective case, around the seeds of the cotton plants of the genus '' Gossypium'' in the mallow family Malvaceae. The fiber is almost pure cellulose, and can contain minor pe ...
, polyester, and
spandex Spandex, Lycra, or elastane is a synthetic fiber known for its exceptional elasticity. It is a polyether-polyurea copolymer that was invented in 1958 by chemist Joseph Shivers at DuPont's Benger Laboratory in Waynesboro, Virginia, US. The g ...
. This led to the development of a wide array of blended fabrics. The new nylon blends retained the desirable properties of nylon (elasticity, durability, ability to be dyed) and kept clothes prices low and affordable. As of 1950, the New York Quartermaster Procurement Agency (NYQMPA), which developed and tested textiles for the
Army An army (from Old French ''armee'', itself derived from the Latin verb ''armāre'', meaning "to arm", and related to the Latin noun ''arma'', meaning "arms" or "weapons"), ground force or land force is a fighting force that fights primarily on ...
and Navy, had committed to developing a wool-nylon blend. They were not the only ones to introduce blends of both natural and synthetic fibers. ''America's Textile Reporter'' referred to 1951 as the "Year of the blending of the fibers". Fabric blends included mixes like "Bunara" (wool-rabbit-nylon) and "Casmet" (wool-nylon-fur). In Britain, in November 1951, the inaugural address of the 198th session of the Royal Society for the Encouragement of Arts, Manufactures and Commerce focused on the blending of textiles. DuPont's Fabric Development Department cleverly targeted French fashion designers, supplying them with fabric samples. In 1955, designers such as
Coco Chanel Gabrielle Bonheur "Coco" Chanel ( , ; 19 August 1883 – 10 January 1971) was a French fashion designer and businesswoman. The founder and namesake of the Chanel brand, she was credited in the post-World War I era with popularizing a sporty, c ...
, Jean Patou, and Christian Dior showed gowns created with DuPont fibers, and fashion photographer Horst P. Horst was hired to document their use of DuPont fabrics. ''American Fabrics'' credited blends with providing "creative possibilities and new ideas for fashions which had been hitherto undreamed of."


Etymology

DuPont went through an extensive process to generate names for its new product. In 1940, John W. Eckelberry of DuPont stated that the letters "nyl" were arbitrary, and the "on" was copied from the suffixes of other fibers such as
cotton Cotton is a soft, fluffy staple fiber that grows in a boll, or protective case, around the seeds of the cotton plants of the genus '' Gossypium'' in the mallow family Malvaceae. The fiber is almost pure cellulose, and can contain minor pe ...
and rayon. A later publication by DuPont (''Context'', vol. 7, no. 2, 1978) explained that the name was originally intended to be "No-Run" ("run" meaning "unravel"), but was modified to avoid making such an unjustified claim. Since the products were not really run-proof, the vowels were swapped to produce "nuron", which was changed to "nilon" "to make it sound less like a nerve tonic". For clarity in pronunciation, the "i" was changed to "y". A persistent urban legend exists that the name is derived from "New York" and "London"; however, no organisation in London was ever involved in the research and production of nylon.


Longer-term popularity

In spite of oil shortages in the 1970s, consumption of nylon textiles continued to grow by 7.5% per year between the 1960s and 1980s. Overall production of synthetic fibers, however, dropped from 63% of the worlds textile production in 1965, to 45% of the world's textile production in early 1970s. The appeal of "new" technologies wore off, and nylon fabric "was going out of style in the 1970s". Also, consumers became concerned about environmental costs throughout the production cycle: obtaining the raw materials (oil), energy use during production, waste produced during creation of the fiber, and eventual waste disposal of materials that were not biodegradable. Synthetic fibers have not dominated the market since the 1950s and 1960s. , the worldwide production of nylon is estimated at 8.9 million tons. As one of the largest engineering polymer families, the global demand of nylon resins and compounds was valued at roughly US$20.5 billion in 2013. The market is expected to reach US$30 billion by 2020 by following an average annual growth of 5.5%. Although pure nylon has many flaws and is now rarely used, its derivatives have greatly influenced and contributed to society. From scientific discoveries relating to the production of plastics and polymerization, to economic impact during the depression and the changing of women's fashion, nylon was a revolutionary product. The
Lunar Flag Assembly The Lunar Flag Assembly (LFA) was a kit containing a flag of the United States designed to be erected on the Moon during the Apollo program. Six such flag assemblies were planted on the Moon. The nylon flags were hung on telescoping staffs and ho ...
, the first flag planted on the moon in a symbolic gesture of celebration, was made of nylon. The flag itself cost $5.50, but had to have a specially designed flagpole with a horizontal bar so that it would appear to "fly". One historian describes nylon as "an object of desire", comparing the invention to Coca-Cola in the eyes of 20th century consumers.


Chemistry


Nomenclature

In common usage, the prefix "PA" ( polyamide) or the name "Nylon" are used interchangeably and are equivalent in meaning. The nomenclature used for nylon polymers was devised during the synthesis of the first simple aliphatic nylons and uses numbers to describe the number of carbons in each monomer unit, including the carbon(s) of the carboxylic acid(s). Subsequent use of cyclic and aromatic monomers required the use of letters or sets of letters. One number after "PA" or "Nylon" indicates a
homopolymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic an ...
which is ''monadic'' or based on one amino acid (minus H2O) as monomer: : PA 6 or Nylon 6: H−(CH2)5−COsub>''n'' made from ε-caprolactam. Two numbers or sets of letters indicate a ''dyadic'' homopolymer formed from two monomers: one diamine and one dicarboxylic acid. The first number indicates the number of carbons in the diamine. The two numbers should be separated by a comma for clarity, but the comma is often omitted. : PA or Nylon 6,10 (or 610): H−(CH2)6−NH−CO−(CH2)8−COsub>''n'' made from
hexamethylenediamine Hexamethylenediamine is the organic compound with the formula H2N(CH2)6NH2. The molecule is a diamine, consisting of a hexamethylene hydrocarbon chain terminated with amine functional groups. The colorless solid (yellowish for some commercial sam ...
and
sebacic acid Sebacic acid is a naturally occurring dicarboxylic acid with the chemical formula . It is a white flake or powdered solid. ''Sebaceus'' is Latin for tallow candle, ''sebum'' is Latin for tallow, and refers to its use in the manufacture of candles. ...
; For copolymers the comonomers or pairs of comonomers are separated by slashes: : PA 6/66: H−(CH2)6−NH−CO−(CH2)4−COsub>''n''− H−(CH2)5−COsub>''m'' made from caprolactam, hexamethylenediamine and adipic acid; : PA 66/610: H−(CH2)6−NH−CO−(CH2)4−COsub>''n''− H−(CH2)6−NH−CO−(CH2)8−COsub>''m'' made from hexamethylenediamine, adipic acid and sebacic acid. The term polyphthalamide (abbreviated to PPA) is used when 60% or more moles of the carboxylic acid portion of the repeating unit in the polymer chain is composed of a combination of terephthalic acid (TPA) and
isophthalic acid Isophthalic acid is an organic compound with the formula C6H4(CO2H)2. This colorless solid is an isomer of phthalic acid and terephthalic acid. The main industrial uses of purified isophthalic acid (PIA) are for the production of polyethylene te ...
(IPA).


Types of nylon


Nylon 66 and related heteropolymers

Nylon 66 and related polyamides are condensation polymers forms from equal parts of diamine and dicarboxylic acids. In the first case, the "repeating unit" has the ABAB structure, as also seen in many polyesters and
polyurethane Polyurethane (; often abbreviated PUR and PU) refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from ...
s. Since each monomer in this copolymer has the same reactive group on both ends, the direction of the amide bond reverses between each monomer, unlike natural polyamide
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s, which have overall directionality: C terminal → N terminal. In the second case (so called AA), the repeating unit corresponds to the single monomer. Wallace Carothers at DuPont patented nylon 66 using amides. In the case of nylons that involve reaction of a diamine and a dicarboxylic acid, it is difficult to get the proportions exactly correct, and deviations can lead to chain termination at molecular weights less than a desirable 10,000 daltons ( u). To overcome this problem, a crystalline, solid "nylon salt" can be formed at room temperature, using an exact 1:1
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of the acid and the base to neutralize each other. The salt is crystallized to purify it and obtain the desired precise stoichiometry. Heated to 285 °C (545 °F), the salt reacts to form nylon polymer with the production of water. Nylon 510, made from pentamethylene diamine and sebacic acid, was included in the Carothers patent to nylon 66 Nylon 610 is produced similarly using hexamethylene diamine.These materials are more expensive because of the relatively high cost of sebacic acid. Owing to the high hydrocarbon content, nylon 610 is more hydrophobic and finds applications suited for this property, such as bristles. Examples of these polymers that are or were commercially available * PA46 DSM Stanyl * PA410 DSM Ecopaxx * PA4T DSM Four Tii * PA66 DuPont Zytel


Nylon 6 and related homopolymers

Thse polymers are made from a lactam or amino acid. The synthetic route using lactams (cyclic amides) was developed by Paul Schlack at IG Farben, leading to nylon 6, or polycaprolactam—formed by a ring-opening polymerization. The peptide bond within the caprolactam is broken with the exposed active groups on each side being incorporated into two new bonds as the monomer becomes part of the polymer backbone. The 428 °F (220 °C) melting point of nylon 6 is lower than the 509 °F (265 °C) melting point of
nylon 66 Nylon 66 (loosely written nylon 6-6, nylon 6/6, nylon 6,6, or nylon 6:6) is a type of polyamide or nylon. It, and nylon 6, are the two most common for textile and plastic industries. Nylon 66 is made of two monomers each containing 6 carbon atoms, ...
. Homopolymer nylons are derived from one monomer Examples of these polymers that are or were commercially available * PA6 Lanxess Durethan B * PA11 Arkema Rilsan * PA12 Evonik Vestamid L


Nylon 1,6

Nylons can also be synthesized from dinitriles using acid catalysis. For example, this method is applicable for preparation of nylon 1,6 from
adiponitrile Adiponitrile is an organic compound with the chemical formula (CH2)4(CN)2. This viscous, colourless dinitrile is an important precursor to the polymer nylon 66. In 2005, about one million tonnes of adiponitrile were produced.M. T. Musser, "Adip ...
,
formaldehyde Formaldehyde ( , ) (systematic name methanal) is a naturally occurring organic compound with the formula and structure . The pure compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde (refer to section ...
and water. Additionally, nylons can be synthesized from diols and dinitriles using this method as well.


Copolymers

It is easy to make mixtures of the monomers or sets of monomers used to make nylons to obtain copolymers. This lowers crystallinity and can therefore lower the melting point. Some copolymers that have been or are commercially available are listed below: * PA6/66 DuPont Zytel * PA6/6T BASF Ultramid T (6/6T copolymer) * PA6I/6T DuPont Selar PA * PA66/6T DuPont Zytel HTN * PA12/MACMI EMS Grilamid TR


Blends

Most nylon polymers are miscible with each other allowing a range of blends to be made. The two polymers can react with one another by transamidation to form random copolymers. According to their crystallinity, polyamides can be: * semi- crystalline: ** high crystallinity: PA46 and PA66; ** low crystallinity: PAMXD6 made from m-xylylenediamine and adipic acid; * amorphous: PA6I made from hexamethylenediamine and isophthalic acid. According to this classification, PA66, for example, is an aliphatic semi-crystalline homopolyamide.


Environmental effect, incineration, and recycling

All nylons are susceptible to hydrolysis, especially by
strong acid Acid strength is the tendency of an acid, symbolised by the chemical formula HA, to dissociate into a proton, H+, and an anion, A-. The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions ...
s, a reaction essentially the reverse of their syntheesis. The molecular weight of nylon products so attacked drops, and cracks form quickly at the affected zones. Lower members of the nylons (such as nylon 6) are affected more than higher members such as nylon 12. This means that nylon parts cannot be used in contact with sulfuric acid for example, such as the electrolyte used in lead–acid batteries. When being molded, nylon must be dried to prevent hydrolysis in the molding machine barrel since water at high temperatures can also degrade the polymer. The reaction is of the type: : The average greenhouse gas footprint of nylon in manufacturing carpets is estimated at 5.43 kg CO2 equivalent per kg, when produced in Europe. This gives it almost the same carbon footprint as wool, but with greater durability and therefore a lower overall carbon footprint. Data published by PlasticsEurope indicates for nylon 66 a greenhouse gas footprint of 6.4 kg CO2 equivalent per kg, and an energy consumption of 138 kJ/kg. When considering the environmental impact of nylon, it is important to consider the use phase. Various nylons break down in fire and form hazardous smoke, and toxic fumes or ash, typically containing hydrogen cyanide. Incinerating nylons to recover the high energy used to create them is usually expensive, so most nylons reach the garbage dumps, decaying slowly. Discarded nylon fabric takes 30–40 years to decompose. Nylon used in discarded fishing gear such as fishing nets is a contributor to debris in the ocean. Nylon is a robust polymer and lends itself well to recycling. Much nylon resin is recycled directly in a closed loop at the injection molding machine, by grinding sprues and runners and mixing them with the virgin granules being consumed by the molding machine. Because of the expense and difficulties of the nylon recycling process, few companies utilize it while most favor using cheaper, newly-made plastics for their products instead. US clothing company
Patagonia Patagonia () refers to a geographical region that encompasses the southern end of South America, governed by Argentina and Chile. The region comprises the southern section of the Andes Mountains with lakes, fjords, temperate rainforests, and g ...
has products containing recycled nylon and in the mid-2010s invested in Bureo, a company that recycles nylon from used fishing nets to use in sunglasses and skateboards. The Italian company Aquafil also has demonstrated recycling fishing nets lost in the ocean into apparel. Vanden Recycling recycles nylon and other polyamides (PA) and has operations in the UK, Australia, Hong Kong, the UAE, Turkey and Finland. Nylon is the most popular fiber type in the residential carpet industry today. The US EPA estimates that 9.2% of carpet fiber, backing and padding was recycled in 2018, 17.8% was incinerated in
waste-to-energy Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Mo ...
facilities, and 73% was discarded in landfills. Some of the world's largest carpet and rug companies are promoting "cradle to cradle"—the re-use of non-virgin materials including ones not historically recycled—as the industry's pathway forward.


Bulk properties

Above their melting temperatures, ''T''m,
thermoplastic A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
s like nylon are amorphous solids or viscous fluids in which the chains approximate
random coil In polymer chemistry, a random coil is a conformation of polymers where the monomer subunits are oriented randomly while still being bonded to adjacent units. It is not one specific shape, but a statistical distribution of shapes for all the ch ...
s. Below ''T''m, amorphous regions alternate with regions which are
lamellar A ''lamella'' (plural ''lamellae'') is a small plate or flake, from the Latin, and may also be used to refer to collections of fine sheets of material held adjacent to one another, in a gill-shaped structure, often with fluid in between though s ...
crystals. The amorphous regions contribute elasticity and the crystalline regions contribute strength and rigidity. The
planar Planar is an adjective meaning "relating to a plane (geometry)". Planar may also refer to: Science and technology * Planar (computer graphics), computer graphics pixel information from several bitplanes * Planar (transmission line technologies), ...
amide (-CO-NH-) groups are very polar, so nylon forms multiple hydrogen bonds among adjacent strands. Because the nylon backbone is so regular and symmetrical, especially if all the amide bonds are in the ''trans'' configuration, nylons often have high crystallinity and make excellent fibers. The amount of crystallinity depends on the details of formation, as well as on the kind of nylon. Nylon 66 can have multiple parallel strands aligned with their neighboring peptide bonds at coordinated separations of exactly six and four carbons for considerable lengths, so the
carbonyl In organic chemistry, a carbonyl group is a functional group composed of a carbon atom double-bonded to an oxygen atom: C=O. It is common to several classes of organic compounds, as part of many larger functional groups. A compound containi ...
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
s and amide
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
s can line up to form interchain hydrogen bonds repeatedly, without interruption (see the figure opposite). Nylon 510 can have coordinated runs of five and eight carbons. Thus parallel (but not antiparallel) strands can participate in extended, unbroken, multi-chain β-pleated sheets, a strong and tough supermolecular structure similar to that found in natural silk fibroin and the β-keratins in feathers. (Proteins have only an amino acid α-carbon separating sequential -CO-NH- groups.) Nylon 6 will form uninterrupted H-bonded sheets with mixed directionalities, but the β-sheet wrinkling is somewhat different. The three-dimensional disposition of each alkane hydrocarbon chain depends on rotations about the 109.47°
tetrahedral In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
bonds of singly bonded carbon atoms. When
extruded Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex c ...
into fibers through pores in an industry spinneret, the individual polymer chains tend to align because of viscous flow. If subjected to cold drawing afterwards, the fibers align further, increasing their crystallinity, and the material acquires additional tensile strength. In practice, nylon fibers are most often drawn using heated rolls at high speeds. Block nylon tends to be less crystalline, except near the surfaces due to shearing stresses during formation. Nylon is clear and
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are assoc ...
less, or milky, but is easily dyed. Multistranded nylon cord and rope is slippery and tends to unravel. The ends can be melted and fused with a heat source such as a flame or electrode to prevent this. Nylons are hygroscopic, and will absorb or desorb moisture as a function of the ambient humidity. Variations in moisture content have several effects on the polymer. Firstly, the dimensions will change, but more importantly moisture acts as a plasticizer, lowering the glass transition temperature (''T''g), and consequently the elastic modulus at temperatures below the ''T''g When dry, polyamide is a good electrical insulator. However, polyamide is hygroscopic. The absorption of water will change some of the material's properties such as its electrical resistance. Nylon is less absorbent than wool or cotton.


Characteristics

The characteristic features of nylon 6,6 include: * Pleats and creases can be heat-set at higher temperatures * More compact molecular structure * Better weathering properties; better sunlight resistance * Softer "Hand" * High melting point (256 °C, 492.8 °F) * Superior colorfastness * Excellent abrasion resistance On the other hand, nylon 6 is easy to dye, more readily fades; it has a higher impact resistance, a more rapid moisture absorption, greater elasticity, and elastic recovery. * Variation of luster: nylon has the ability to be very lustrous, semi-lustrous, or dull. * Durability: its high tenacity fibers are used for seatbelts, tire cords, ballistic cloth, and other uses. * High elongation * Excellent abrasion resistance * Highly resilient (nylon fabrics are heat-set) * Paved the way for easy-care garments * High resistance to insects, fungi, animals, as well as molds, mildew, rot, and many chemicals * Used in carpets and nylon stockings * Melts instead of burning * Used in many military applications * Good
specific strength The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applic ...
* Transparent to infrared light (−12 dB)


Flammability

Nylon clothing tends to be less flammable than cotton and rayon, but nylon fibers may melt and stick to skin.


Uses of nylon

Nylon was first used commercially in a nylon- bristled toothbrush in 1938, followed more famously in women's
stocking Stockings (also known as hose, especially in a historical context) are close-fitting, variously elastic garments covering the leg from the foot up to the knee or possibly part or all of the thigh. Stockings vary in color, design, and transpare ...
s or " nylons" which were shown at the 1939 New York World's Fair and first sold commercially in 1940. Its use increased dramatically during World War II, when the need for fabrics increased dramatically.


Nylon fibers

Bill Pittendreigh, DuPont, and other individuals and corporations worked diligently during the first few months of World War II to find a way to replace Asian
silk Silk is a natural protein fiber, some forms of which can be woven into textiles. The protein fiber of silk is composed mainly of fibroin and is produced by certain insect larvae to form cocoons. The best-known silk is obtained from the ...
and hemp with nylon in parachutes. It was also used to make tires, tents,
rope A rope is a group of yarns, plies, fibres, or strands that are twisted or braided together into a larger and stronger form. Ropes have tensile strength and so can be used for dragging and lifting. Rope is thicker and stronger than similar ...
s, ponchos, and other
military A military, also known collectively as armed forces, is a heavily armed, highly organized force primarily intended for warfare. It is typically authorized and maintained by a sovereign state, with its members identifiable by their distinct ...
supplies. It was even used in the production of a high-grade paper for U.S.
currency A currency, "in circulation", from la, currens, -entis, literally meaning "running" or "traversing" is a standardization of money in any form, in use or circulation as a medium of exchange, for example banknotes and coins. A more general ...
. At the outset of the war,
cotton Cotton is a soft, fluffy staple fiber that grows in a boll, or protective case, around the seeds of the cotton plants of the genus '' Gossypium'' in the mallow family Malvaceae. The fiber is almost pure cellulose, and can contain minor pe ...
accounted for more than 80% of all fibers used and manufactured, and wool fibers accounted for nearly all of the rest. By August 1945, manufactured fibers had taken a market share of 25%, at the expense of cotton. After the war, because of shortages of both silk and nylon, nylon parachute material was sometimes repurposed to make dresses. Nylon 6 and 66 fibers are used in carpet manufacture. Nylon is one kind of fiber used in tire cord. Herman E. Schroeder pioneered application of nylon in tires.


Molds and resins

Nylon resins are widely used in the automobile industry especially in the engine compartment. Molded nylon is used in hair combs and mechanical parts such as
machine screw A screw and a bolt (see '' Differentiation between bolt and screw'' below) are similar types of fastener typically made of metal and characterized by a helical ridge, called a ''male thread'' (external thread). Screws and bolts are used to f ...
s,
gear A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth (called ''cogs''), which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic ...
s, gaskets, and other low- to medium-stress components previously cast in metal. Engineering-grade nylon is processed by extrusion, casting, and injection molding. Type 6,6 Nylon 101 is the most common commercial grade of nylon, and Nylon 6 is the most common commercial grade of molded nylon. For use in tools such as
spudger A selection of spudgers A spudger (also known as a spludger, non-marring nylon black stick tool or simply black stick) is a tool that has a wide flat-head screwdriver-like end that extends as a wedge, used to separate pressure-fit plastic compon ...
s, nylon is available in glass-filled variants which increase structural and impact strength and rigidity, and molybdenum disulfide-filled variants which increase
lubricity Lubricity is the measure of the reduction in friction and/or wear by a lubricant. The study of lubrication and wear mechanisms is called tribology. Measurement of lubricity The lubricity of a substance is not a material property, and cannot be me ...
. Nylon can be used as the matrix material in composite materials, with reinforcing fibers like glass or carbon fiber; such a composite has a higher
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
than pure nylon. Such thermoplastic composites (25% to 30% glass fiber) are frequently used in car components next to the engine, such as intake manifolds, where the good heat resistance of such materials makes them feasible competitors to metals. Nylon was used to make the stock of the
Remington Nylon 66 The Remington Nylon 66 was a rifle manufactured by Remington Arms from 1959 to 1989. It was one of the earliest mass-produced rifles to feature a stock made from a material other than wood. Previously the 22-410 Stevens combination gun had been o ...
rifle. The frame of the modern Glock pistol is made of a nylon composite.


Food packaging

Nylon resins are used as a component of food packaging films where an oxygen barrier is needed. Some of the terpolymers based upon nylon are used every day in packaging. Nylon has been used for meat wrappings and sausage sheaths. The high temperature resistance of nylon makes it useful for oven bags.


Filaments

Nylon filaments are primarily used in brushes especially toothbrushes and
string trimmer A string trimmer, also known by the portmanteau strimmer and the trademarks Weedwacker, Weed eater and Whipper Snipper. is a garden tool for cutting grass, small weeds, and groundcover. It uses a whirling monofilament line instead of a blad ...
s. They are also used as monofilaments in
fishing line A fishing line is a flexible, high-tensile cord used in angling to tether and pull in fish, in conjunction with at least one hook. Fishing lines are usually pulled by and stored in a reel, but can also be retrieved by hand, with a fixed attach ...
. Nylon 610 and 612 are the most used polymers for filaments. Its various properties also make it very useful as a material in
additive manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
; specifically as a filament in consumer and professional grade
fused deposition modeling Fused filament fabrication (FFF), also known as fused deposition modeling (with the trademarked acronym FDM), or called ''filament freeform fabrication'', is a 3D printing process that uses a continuous filament of a thermoplastic material. Filam ...
3D printers.


Other forms


Extruded profiles

Nylon resins can be extruded into rods, tubes, and sheets.


Powder coating

Nylon powders are used to powder coat metals. Nylon 11 and nylon 12 are the most widely used.


Instrument strings

In the mid-1940s, classical guitarist
Andrés Segovia Andrés Segovia Torres, 1st Marquis of Salobreña (21 February 1893 – 2 June 1987) was a Spanish virtuoso classical guitarist. Many professional classical guitarists were students of Segovia or their students. Segovia's contribution to the m ...
mentioned the shortage of good guitar strings in the United States, particularly his favorite Pirastro
catgut Catgut (also known as gut) is a type of cord that is prepared from the natural fiber found in the walls of animal intestines. Catgut makers usually use sheep or goat intestines, but occasionally use the intestines of cattle, hogs, horses, mules, ...
strings, to a number of foreign diplomats at a party, including General Lindeman of the British Embassy. A month later, the General presented Segovia with some nylon strings which he had obtained via some members of the DuPont family. Segovia found that although the strings produced a clear sound, they had a faint metallic
timbre In music, timbre ( ), also known as tone color or tone quality (from psychoacoustics), is the perceived sound quality of a musical note, sound or tone. Timbre distinguishes different types of sound production, such as choir voices and musica ...
which he hoped could be eliminated. Nylon strings were first tried on stage by Olga Coelho in New York in January 1944. In 1946, Segovia and string maker Albert Augustine were introduced by their mutual friend Vladimir Bobri, editor of Guitar Review. On the basis of Segovia's interest and Augustine's past experiments, they decided to pursue the development of nylon strings. DuPont, skeptical of the idea, agreed to supply the nylon if Augustine would endeavor to develop and produce the actual strings. After three years of development, Augustine demonstrated a nylon first string whose quality impressed guitarists, including Segovia, in addition to DuPont. Wound strings, however, were more problematic. Eventually, however, after experimenting with various types of metal and smoothing and polishing techniques, Augustine was also able to produce high quality nylon wound strings.


See also

*
Ballistic nylon Ballistic nylon is a thick, tough, nylon fabric with several uses. Ballistic nylon was developed by the DuPont corporation as a material for flak jackets to be worn by World War II airmen. The term ''ballistic nylon'' originates in the fabric's ...
*
Cordura Cordura is a collection of synthetic fiber-based fabric technologies used in a wide array of products including luggage, backpacks, trousers, military wear and performance apparel. Originally developed and registered as a trademark by E.I. ...
*
Forensic engineering Forensic engineering has been defined as ''"the investigation of failures - ranging from serviceability to catastrophic - which may lead to legal activity, including both civil and criminal".'' It includes the investigation of materials, produc ...
* Nylon-eating bacteria *
Plastic Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptab ...
* Polyamide, PA *
Ripstop nylon __NOTOC__ Ripstop fabrics are woven fabrics, often made of nylon, using a reinforcing technique that makes them more resistant to tearing and ripping. During weaving, stronger (and often thicker) reinforcement yarns are interwoven at regular inte ...
* Step-growth polymerization


Notes


References


Further reading

* * *


External links

*
Polyamide Nylon Plastic

Joseph X. Labovsky Collection of Nylon Photographs and Ephemera
Science History Institute The Science History Institute is an institution that preserves and promotes understanding of the history of science. Located in Philadelphia, Pennsylvania, it includes a library, museum, archive, research center and conference center. It was f ...
Digital Collections. (High-resolution scans of nylon-related photographs and ephemera collected by Joseph X. Labovsky, a lab assistant to Wallace Carothers, during the early stages of nylon development and production at DuPont). {{Authority control Products introduced in 1935 American inventions Commodity chemicals Dielectrics DuPont products Plastics Polyamides Synthetic fibers de:Polyamide#Nylon