HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relat ...
and chemistry, a nucleon is either a
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
or a
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were thought to be
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions (quarks, leptons, antiq ...
s, not made up of smaller parts. Now they are known to be composite particles, made of three
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s bound together by the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the ...
. The interaction between two or more nucleons is called
internucleon interaction The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
or
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucl ...
, which is also ultimately caused by the strong interaction. (Before the discovery of quarks, the term "strong interaction" referred to just internucleon interactions.) Nucleons sit at the boundary where
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and b ...
and
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
overlap. Particle physics, particularly
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type o ...
, provides the fundamental equations that describe the properties of quarks and of the strong interaction. These equations describe quantitatively how quarks can bind together into protons and neutrons (and all the other
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s). However, when multiple nucleons are assembled into an atomic nucleus (
nuclide A nuclide (or nucleide, from nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by Truman ...
), these fundamental equations become too difficult to solve directly (see
lattice QCD Lattice QCD is a well-established non- perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the ...
). Instead, nuclides are studied within
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
, which studies nucleons and their interactions by approximations and models, such as the
nuclear shell model In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell mo ...
. These models can successfully describe nuclide properties, as for example, whether or not a particular nuclide undergoes
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
. The proton and neutron are in a scheme of categories being at once
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s,
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s and
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified ...
s. The proton carries a positive net
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
, and the neutron carries a zero net charge; the proton's
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementa ...
is only about 0.13% less than the neutron's. Thus, they can be viewed as two states of the same nucleon, and together form an
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions o ...
doublet (). In isospin space, neutrons can be transformed into protons and conversely by
SU(2) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special ...
symmetries. These nucleons are acted upon equally by the strong interaction, which is invariant under rotation in isospin space. According to the
Noether theorem Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in ...
, isospin is conserved with respect to the strong interaction.


Overview


Properties

Protons and neutrons are best known in their role as nucleons, i.e., as the components of atomic nuclei, but they also exist as free particles. Free neutrons are unstable, with a half-life of around 13 minutes, but they have important applications (see
neutron radiation Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new isotopes� ...
and
neutron scattering Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. Th ...
). Protons not bound to other nucleons are the nuclei of hydrogen atoms when bound with an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kno ...
or if not bound to anything are
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conv ...
s or cosmic rays. Both the proton and the neutron are composite particles, meaning that each is composed of smaller parts, namely three
quarks A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
each; although once thought to be so, neither is an
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions (quarks, leptons, antiq ...
. A proton is composed of two
up quark The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quark ...
s and one
down quark The down quark or d quark (symbol: d) is the second-lightest of all quarks, a type of elementary particle, and a major constituent of matter. Together with the up quark, it forms the neutrons (one up quark, two down quarks) and protons (two up ...
, while the neutron has one up quark and two down quarks. Quarks are held together by the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the ...
, or equivalently, by
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
s, which mediate the strong force at the quark level. An up quark has
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respectiv ...
  ''e'', and a down quark has charge  ''e'', so the summed electric charges of proton and neutron are + ''e'' and 0, respectively. Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is electrically neutral. The masses of the proton and neutron are similar: for the proton it is (), while for the neutron it is (); the neutron is roughly 0.13% heavier. The similarity in mass can be explained roughly by the slight difference in masses of up quarks and down quarks composing the nucleons. However, a detailed description remains an unsolved problem in particle physics. The
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
of the nucleon is , which means that they are
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s and, like
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kno ...
s, are subject to the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulated ...
: no more than one nucleon, e.g. in an atomic nucleus, may occupy the same
quantum state In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in t ...
. The
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions o ...
and
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
quantum numbers of the nucleon have two states each, resulting in four combinations in total. An
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
is composed of four nucleons occupying all four combinations, namely, it has two protons (having opposite spin) and two neutrons (also having opposite spin), and its net
nuclear spin In atomic physics, the spin quantum number is a quantum number (designated ) which describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. The phrase was originally used to describe t ...
is zero. In larger nuclei constituent nucleons, by Pauli exclusion, are compelled to have relative
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and mea ...
, which may also contribute to nuclear spin via the
orbital quantum number The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe t ...
. They spread out into nuclear shells analogous to
electron shell In chemistry and atomic physics, an electron shell may be thought of as an orbit followed by electrons around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or ...
s known from chemistry. Both the proton and neutron have
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets ...
s, though the nucleon magnetic moments are anomalous and were unexpected when they were discovered in the 1930s. The proton's magnetic moment, symbol ''μ'', is , whereas, if the proton were an elementary Dirac particle, it should have a magnetic moment of . Here the unit for the magnetic moments is the
nuclear magneton The nuclear magneton (symbol ''μ'') is a physical constant of magnetic moment, defined in SI units by: :\mu_\text = and in Gaussian CGS units by: :\mu_\text = where: :''e'' is the elementary charge, :''ħ'' is the reduced Planck constant ...
, symbol ''μ'', an atomic-scale
unit of measure A unit of measurement is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multi ...
. The neutron's magnetic moment is ''μ'' = , whereas, since the neutron lacks an electric charge, it should have no magnetic moment. The value of the neutron's magnetic moment is negative because the direction of the moment is opposite to the neutron's spin. The nucleon magnetic moments arise from the quark substructure of the nucleons. The proton magnetic moment is exploited for NMR / MRI scanning.


Stability

A neutron in free state is an unstable particle, with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
around ten minutes. It undergoes decay (a type of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
) by turning into a proton while emitting an electron and an
electron antineutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli ...
. This reaction can occur because the mass of the neutron is slightly greater than that of the proton. (See the
Neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
article for more discussion of neutron decay.) A proton by itself is thought to be stable, or at least its lifetime is too long to measure. This is an important discussion in particle physics (see ''
Proton decay In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov i ...
''). Inside a nucleus, on the other hand, combined protons and neutrons (nucleons) can be stable or unstable depending on the
nuclide A nuclide (or nucleide, from nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by Truman ...
, or nuclear species. Inside some nuclides, a neutron can turn into a proton (producing other particles) as described above; the reverse can happen inside other nuclides, where a proton turns into a neutron (producing other particles) through decay or
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
. And inside still other nuclides, both protons and neutrons are stable and do not change form.


Antinucleons

Both nucleons have corresponding
antiparticle In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antie ...
s: the
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exis ...
and the
antineutron The antineutron is the antiparticle of the neutron with symbol . It differs from the neutron only in that some of its properties have equal magnitude but opposite sign. It has the same mass as the neutron, and no net electric charge, but has opp ...
, which have the same mass and opposite charge as the proton and neutron respectively, and they interact in the same way. (This is generally believed to be ''exactly'' true, due to
CPT symmetry Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and ...
. If there is a difference, it is too small to measure in all experiments to date.) In particular, antinucleons can bind into an "antinucleus". So far, scientists have created antideuterium and antihelium-3 nuclei.


Tables of detailed properties


Nucleons

The masses of the proton and neutron are known with far greater precision in
dalton Dalton may refer to: Science * Dalton (crater), a lunar crater * Dalton (program), chemistry software * Dalton (unit) (Da), the atomic mass unit * John Dalton, chemist, physicist and meteorologist Entertainment * Dalton (Buffyverse), minor c ...
s (Da) than in MeV/''c''2 due to the way in which these are defined. The conversion factor used is 1 Da = . At least 1035 years. See
proton decay In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov i ...
. For
free neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
s; in most common nuclei, neutrons are stable. The masses of their antiparticles are assumed to be identical, and no experiments have refuted this to date. Current experiments show any relative difference between the masses of the proton and antiproton must be less than and the difference between the neutron and antineutron masses is on the order of .


Nucleon resonances

Nucleon resonances are
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to ...
s of nucleon particles, often corresponding to one of the quarks having a flipped
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
state, or with different orbital angular momentum when the particle decays. Only resonances with a 3- or 4-star rating at the
Particle Data Group The Particle Data Group (or PDG) is an international collaboration of particle physicists that compiles and reanalyzes published results related to the properties of particles and fundamental interactions. It also publishes reviews of theoretical r ...
(PDG) are included in this table. Due to their extraordinarily short lifetimes, many properties of these particles are still under investigation. The symbol format is given as N() , where is the particle's approximate mass, is the orbital angular momentum (in the
spectroscopic notation Spectroscopic notation provides a way to specify atomic ionization states, atomic orbitals, and molecular orbitals. Ionization states Spectroscopists customarily refer to the spectrum arising from a given ionization state of a given element by ...
) of the nucleon–meson pair, produced when it decays, and and are the particle's
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions o ...
and
total angular momentum In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin). If s is the particle's sp ...
respectively. Since nucleons are defined as having isospin, the first number will always be 1, and the second number will always be odd. When discussing nucleon resonances, sometimes the N is omitted and the order is reversed, in the form (); for example, a proton can be denoted as "N(939) S11" or "S11 (939)". The table below lists only the base resonance; each individual entry represents 4 
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified ...
s: 2 nucleon resonances particles and their 2 antiparticles. Each resonance exists in a form with a positive
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respectiv ...
(), with a quark composition of like the proton, and a neutral form, with a quark composition of like the neutron, as well as the corresponding antiparticles with antiquark compositions of and respectively. Since they contain no
strange Strange may refer to: Fiction * Strange (comic book), a comic book limited series by Marvel Comics * Strange (Marvel Comics), one of a pair of Marvel Comics characters known as The Strangers * Adam Strange, a DC Comics superhero * The title c ...
, charm, bottom, or top quarks, these particles do not possess
strangeness In particle physics, strangeness ("''S''") is a property of particles, expressed as a quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum num ...
, etc. The table only lists the resonances with an
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions o ...
= . For resonances with
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions o ...
= , see the article on Delta baryons. † ''The P11(939) nucleon represents the excited state of a normal proton or neutron. Such a particle may be stable when in an atomic nucleus, e.g. in
lithium-6 Naturally occurring lithium (3Li) is composed of two stable isotopes, lithium-6 and lithium-7, with the latter being far more abundant on Earth. Both of the natural isotopes have an unexpectedly low nuclear binding energy per nucleon ( for li ...
.''


Quark model classification

In the
quark model In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the ...
with
SU(2) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special ...
flavour Flavor or flavour is either the sensory perception of taste or smell, or a flavoring in food that produces such perception. Flavor or flavour may also refer to: Science * Flavors (programming language), an early object-oriented extension to Li ...
, the two nucleons are part of the ground-state doublet. The proton has quark content of ''uud'', and the neutron, ''udd''. In
SU(3) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special ...
flavour, they are part of the ground-state octet (8) of
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
-
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified ...
s, known as the Eightfold way. The other members of this octet are the
hyperon In particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quark. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically re ...
s
strange Strange may refer to: Fiction * Strange (comic book), a comic book limited series by Marvel Comics * Strange (Marvel Comics), one of a pair of Marvel Comics characters known as The Strangers * Adam Strange, a DC Comics superhero * The title c ...
isotriplet , , , the and the strange isodoublet , . One can extend this multiplet in SU(4) flavour (with the inclusion of the
charm quark The charm quark, charmed quark or c quark (from its symbol, c) is the third-most massive of all quarks, a type of elementary particle. Charm quarks are found in hadrons, which are subatomic particles made of quarks. Examples of hadrons containin ...
) to the ground-state 20-plet, or to SU(6) flavour (with the inclusion of the top and
bottom quark The bottom quark or b quark, also known as the beauty quark, is a third-generation heavy quark with a charge of −  ''e''. All quarks are described in a similar way by electroweak and quantum chromodynamics, but the bottom quark has excep ...
s) to the ground-state 56-plet. The article on
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions o ...
provides an explicit expression for the nucleon wave functions in terms of the quark flavour eigenstates.


Models

Although it is known that the nucleon is made from three quarks, , it is not known how to solve the
equations of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Verla ...
for
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type o ...
. Thus, the study of the low-energy properties of the nucleon are performed by means of models. The only first-principles approach available is to attempt to solve the equations of QCD numerically, using
lattice QCD Lattice QCD is a well-established non- perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the ...
. This requires complicated algorithms and very powerful
supercomputer A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions ...
s. However, several analytic models also exist:


Skyrmion models

The
skyrmion In particle theory, the skyrmion () is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by (and named after) Tony Skyrme in 1961. As a topological soli ...
models the nucleon as a
topological soliton A topological soliton occurs when two adjoining structures or spaces are in some way "out of phase" with each other in ways that make a seamless transition between them impossible. One of the simplest and most commonplace examples of a topologica ...
in a nonlinear
SU(2) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special ...
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gen ...
field. The topological stability of the skyrmion is interpreted as the conservation of
baryon number In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as ::B = \frac\left(n_\text - n_\bar\right), where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryon ...
, that is, the non-decay of the nucleon. The local topological winding number density is identified with the local
baryon number In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as ::B = \frac\left(n_\text - n_\bar\right), where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryon ...
density of the nucleon. With the pion isospin vector field oriented in the shape of a hedgehog space, the model is readily solvable, and is thus sometimes called the ''hedgehog model''. The hedgehog model is able to predict low-energy parameters, such as the nucleon mass, radius and axial coupling constant, to approximately 30% of experimental values.


MIT bag model

The ''MIT bag model'' confines quarks and gluons interacting through
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type o ...
to a region of space determined by balancing the pressure exerted by the quarks and gluons against a hypothetical pressure exerted by the vacuum on all colored quantum fields. The simplest approximation to the model confines three non-interacting quarks to a spherical cavity, with the
boundary condition In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to t ...
that the quark
vector current In special and general relativity, the four-current (technically the four-current density) is the four-dimensional analogue of the electric current density. Also known as vector current, it is used in the geometric context of ''four-dimensional spa ...
vanish on the boundary. The non-interacting treatment of the quarks is justified by appealing to the idea of
asymptotic freedom In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. Asymptotic fre ...
, whereas the hard-boundary condition is justified by
quark confinement In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions ...
. Mathematically, the model vaguely resembles that of a radar cavity, with solutions to the
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac p ...
standing in for solutions to the
Maxwell equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
, and the vanishing vector current boundary condition standing for the conducting metal walls of the radar cavity. If the radius of the bag is set to the radius of the nucleon, the bag model predicts a nucleon mass that is within 30% of the actual mass. Although the basic bag model does not provide a pion-mediated interaction, it describes excellently the nucleon–nucleon forces through the 6 quark bag ''s''-channel mechanism using the ''P''-matrix.


Chiral bag model

The ''chiral bag model'' merges the ''MIT bag model'' and the ''skyrmion model''. In this model, a hole is punched out of the middle of the skyrmion and replaced with a bag model. The boundary condition is provided by the requirement of continuity of the axial vector current across the bag boundary. Very curiously, the missing part of the topological winding number (the baryon number) of the hole punched into the skyrmion is exactly made up by the non-zero
vacuum expectation value In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. ...
(or spectral asymmetry) of the quark fields inside the bag. , this remarkable trade-off between
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing h ...
and the
spectrum of an operator In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is ...
does not have any grounding or explanation in the mathematical theory of
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
s and their relationship to
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
. Several other properties of the chiral bag are notable: It provides a better fit to the low-energy nucleon properties, to within 5–10%, and these are almost completely independent of the chiral-bag radius, as long as the radius is less than the nucleon radius. This independence of radius is referred to as the ''Cheshire Cat principle'', after the fading of
Lewis Carroll Charles Lutwidge Dodgson (; 27 January 1832 – 14 January 1898), better known by his pen name Lewis Carroll, was an English author, poet and mathematician. His most notable works are '' Alice's Adventures in Wonderland'' (1865) and its seque ...
's
Cheshire Cat The Cheshire Cat ( or ) is a fictional cat popularised by Lewis Carroll in ''Alice's Adventures in Wonderland'' and known for its distinctive mischievous grin. While now most often used in ''Alice''-related contexts, the association of a "Ch ...
to just its smile. It is expected that a first-principles solution of the equations of QCD will demonstrate a similar duality of quark–
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
descriptions.


See also

*
Hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s *
Electroweak interaction In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...


Footnotes


References


Particle listings


Further reading

* * * {{Authority control Hadrons Baryons Neutron