noncommutative harmonic analysis
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, noncommutative harmonic analysis is the field in which results from
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Josep ...
are extended to
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two str ...
s that are not commutative. Since locally compact abelian groups have a well-understood theory, Pontryagin duality, which includes the basic structures of
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''p ...
and
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
s, the major business of non-commutative
harmonic analysis Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fo ...
is usually taken to be the extension of the theory to all groups ''G'' that are
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
. The case of compact groups is understood, qualitatively and after the Peter–Weyl theorem from the 1920s, as being generally analogous to that of
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked ...
s and their character theory. The main task is therefore the case of ''G'' that is locally compact, not compact and not commutative. The interesting examples include many
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
s, and also algebraic groups over
p-adic field In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension ...
s. These examples are of interest and frequently applied in
mathematical physics Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and t ...
, and contemporary
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777â ...
, particularly
automorphic representation In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of ...
s. What to expect is known as the result of basic work of
John von Neumann John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 â€“ February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cove ...
. He showed that if the von Neumann group algebra of ''G'' is of type I, then ''L''2(''G'') as a unitary representation of ''G'' is a direct integral of irreducible representations. It is parametrized therefore by the unitary dual, the set of isomorphism classes of such representations, which is given the hull-kernel topology. The analogue of the Plancherel theorem is abstractly given by identifying a measure on the unitary dual, the Plancherel measure, with respect to which the direct integral is taken. (For Pontryagin duality the Plancherel measure is some Haar measure on the dual group to ''G'', the only issue therefore being its normalization.) For general locally compact groups, or even countable discrete groups, the von Neumann group algebra need not be of type I and the regular representation of ''G'' cannot be written in terms of irreducible representations, even though it is unitary and completely reducible. An example where this happens is the infinite symmetric group, where the von Neumann group algebra is the hyperfinite type II1 factor. The further theory divides up the Plancherel measure into a discrete and a continuous part. For semisimple groups, and classes of solvable Lie groups, a very detailed theory is available.


See also

* Selberg trace formula * Langlands program *
Kirillov orbit theory In mathematics, the orbit method (also known as the Kirillov theory, the method of coadjoint orbits and by a few similar names) establishes a correspondence between irreducible unitary representations of a Lie group and its coadjoint orbits: or ...
*
Discrete series representation In mathematics, a discrete series representation is an irreducible unitary representation of a locally compact topological group ''G'' that is a subrepresentation of the left regular representation of ''G'' on L²(''G''). In the Plancherel meas ...
*
Zonal spherical function In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group ''G'' with compact subgroup ''K'' (often a maximal compact subgroup) that arises as the matrix coefficient of a ''K''-invariant vect ...


References

*"Noncommutative harmonic analysis: in honor of Jacques Carmona", Jacques Carmona, Patrick Delorme, Michèle Vergne; Publisher Springer, 2004 ''Noncommutaive Harmonic Analysis: In Honor of Jacques Carmona
/ref> * Yurii I. Lyubich. ''Introduction to the Theory of Banach Representations of Groups''. Translated from the 1985 Russian-language edition (Kharkov, Ukraine). Birkhäuser Verlag. 1988.


Notes

{{reflist Topological groups * Duality theories