non-photochemical quenching
   HOME

TheInfoList



OR:

Non-photochemical quenching (NPQ) is a mechanism employed by plants and algae to protect themselves from the adverse effects of high light intensity. It involves the quenching of singlet
excited state In quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Add ...
chlorophyll Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words (, "pale green") and (, "leaf"). Chlorophyll allows plants to absorb energy ...
s (Chl) via enhanced
internal conversion Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal conversion (o ...
to the
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
(non-radiative decay), thus harmlessly dissipating excess excitation energy as heat through molecular vibrations. NPQ occurs in almost all photosynthetic
eukaryote The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
s (algae and plants), and helps to regulate and protect photosynthesis in environments where
light energy In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calculated by integrating radian ...
absorption exceeds the capacity for light utilization in
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
.


Process

When a molecule of
chlorophyll Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words (, "pale green") and (, "leaf"). Chlorophyll allows plants to absorb energy ...
absorbs light it is promoted from its
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
to its first singlet excited state. The excited state then has three main fates. Either the energy is; 1. passed to another chlorophyll molecule by
Förster resonance energy transfer Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). ...
(in this way excitation is gradually passed to the photochemical reaction centers (
photosystem I Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the Light-dependent reactions, photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I is an integral membrane ...
and
photosystem II Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants, algae, and cyanobacteria. Within the photosystem ...
) where energy is used in photosynthesis (called photochemical quenching)); or 2. the excited state can return to the ground state by emitting the energy as heat (called non-photochemical quenching); or 3. the excited state can return to the ground state by emitting a photon (
fluorescence Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
). In higher plants, the absorption of light continues to increase as light intensity increases, while the capacity for photosynthesis tends to saturate. Therefore, there is the potential for the absorption of excess light energy by photosynthetic light harvesting systems. This excess excitation energy leads to an increase in the lifetime of singlet excited
chlorophyll Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words (, "pale green") and (, "leaf"). Chlorophyll allows plants to absorb energy ...
, increasing the chances of the formation of long-lived chlorophyll triplet states by inter-system crossing. Triplet chlorophyll is a potent photosensitiser of molecular oxygen forming
singlet oxygen Singlet oxygen, systematically named dioxygen(singlet) and dioxidene, is a gaseous inorganic chemistry, inorganic chemical with the formula O=O (also written as or ), which is in a quantum state where all electrons are Radical (chemistry), spin p ...
which can cause oxidative damage to the pigments, lipids and proteins of the photosynthetic
thylakoid membrane Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thyl ...
. To counter this problem, one photoprotective mechanism is so-called non-photochemical quenching (NPQ), which relies upon the conversion and dissipation of the excess excitation energy into heat. NPQ involves conformational changes within the light harvesting proteins of photosystem (PS) II that bring about a change in pigment interactions causing the formation of energy traps. The conformational changes are stimulated by a combination of transmembrane proton gradient, the
photosystem II Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants, algae, and cyanobacteria. Within the photosystem ...
subunit S ( PsBs) and the enzymatic conversion of the carotenoid violaxanthin to
zeaxanthin Zeaxanthin is one of the most common carotenoids in nature, and is used in the xanthophyll cycle. Synthesized in plants and some micro-organisms, it is the pigment that gives paprika (made from bell peppers), corn, saffron, goji ( wolfberries) ...
(the
xanthophyll cycle Xanthophylls (originally phylloxanthins) are yellow pigments that occur widely in nature and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. The name is from Greek: (), meaning "yellow", an ...
). Violaxanthin is a carotenoid downstream from chlorophyll ''a'' and ''b'' within the antenna of PS II and nearest to the special chlorophyll ''a'' located in the reaction center of the antenna. As light intensity increases, acidification of the thylakoid lumen takes place through the stimulation of carbonic anhydrase, which in turn converts bicarbonate (HCO3) into carbon dioxide causing an influx of CO2 and inhibiting Rubisco oxygenase activity. This acidification also leads to the protonation of the PsBs subunit of PS II which catalyze the conversion of violaxanthin to zeaxanthin, and is involved in the alteration orientation of the photosystems at times of high light absorption to reduce the quantities of carbon dioxide created and start the non-photochemical quenching, along with the activation of enzyme violaxanthin de-epoxidase which eliminates an epoxide and forms an alkene on a six-member ring of violaxanthin giving rise to another carotenoid known as antheraxanthin. Violaxanthin contains two epoxides each bonded to a six-member ring and when both are eliminated by de-epoxidase the carotenoid zeaxanthin is formed. Only violaxanthin is able to transport a photon to the special chlorophyll ''a.'' Antheraxanthin and zeaxanthin dissipate the energy from the photon as heat preserving the integrity of photosystem II. This dissipation of energy as heat is one form of non-photochemical quenching.


Measurement of NPQ

Non-photochemical quenching is measured by the quenching of chlorophyll fluorescence and is distinguished from photochemical quenching by applying a bright light pulse under actinic light to transiently saturate photosystem II reaction center and compare the maximal yield of fluorescence emission under light and dark-adapted state. Non-photochemical quenching is not affected if the pulse of light is short. During this pulse, the fluorescence reaches the level reached in the absence of any photochemical quenching, known as maximum fluorescence, F_m. ''For further discussion, see Measuring chlorophyll fluorescence and Plant stress measurement.'' Chlorophyll fluorescence can easily be measured with a chlorophyll fluorometer. Some fluorometers can calculate NPQ and photochemical quenching coefficients (including qP, qN, qE and NPQ), as well as light and dark adaptation parameters (including Fo, Fm, and Fv/Fm).


See also

*
Chlorophyll fluorescence Chlorophyll fluorescence is light re-emitted by chlorophyll molecules during return from Excited state, excited to non-excited states. It is used as an indicator of photosynthetic energy conversion in plants, algae and bacteria. Excited chlorop ...
* Measuring chlorophyll fluorescence * Integrated fluorometer


References

{{Reflist Photosynthesis