neutrino detector
   HOME

TheInfoList



OR:

A neutrino detector is a physics apparatus which is designed to study
neutrino A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
s. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources are the Sun and the supernova 1987A in the nearby Large Magellanic Cloud. Another likely source (three standard deviations) is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe". Various detection methods have been used. Super Kamiokande is a large volume of water surrounded by
phototube A phototube or photoelectric cell is a type of gas filled tube, gas-filled or vacuum tube that is sensitive to light. Such a tube is more correctly called a 'photoemissive cell' to distinguish it from photovoltaic or photoconductive cells. Photo ...
s that watch for the Cherenkov radiation emitted when an incoming neutrino creates an
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
or
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
in the water. The Sudbury Neutrino Observatory was similar, but used
heavy water Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
as the detecting medium. Other detectors have consisted of large volumes of
chlorine Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
or
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
which are periodically checked for excesses of
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
or
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
, respectively, which are created by neutrinos interacting with the original substance.
MINOS Main injector neutrino oscillation search (MINOS) was a particle physics experiment designed to study the phenomena of neutrino oscillations, first discovered by a Super-Kamiokande (Super-K) experiment in 1998. Neutrinos produced by the NuMI ...
used a solid plastic scintillator watched by phototubes; Borexino uses a liquid pseudocumene scintillator also watched by phototubes; and the NOνA detector uses a liquid scintillator watched by avalanche photodiodes. The proposed acoustic detection of neutrinos via the thermoacoustic effect is the subject of dedicated studies done by the ANTARES, IceCube, and KM3NeT collaborations.


Theory

Neutrinos are omnipresent in nature: every second, tens of billions of them "pass through every square centimetre of our bodies without us ever noticing." Many were created during the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
, and others are generated by nuclear reactions inside stars, planets, and by other interstellar processes. According to scientists' speculations, some may also originate from events in the universe such as "colliding black holes, gamma ray bursts from exploding stars, and/or violent events at the cores of distant galaxies". Despite how common they are, neutrinos are extremely difficult to detect, due to their low mass and lack of electric charge. Unlike other particles, neutrinos only interact via
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
and the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
. The two types of weak interactions they (rarely) engage in are neutral current (which involves the exchange of a Z boson and only results in deflection) and charged current (which involves the exchange of a W boson and causes the neutrino to convert into a charged
lepton In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
: an
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
, a
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
, or a tauon, or one of their antiparticles, if an antineutrino). According to the laws of physics neutrinos ''must'' have mass, but only a "smidgen of rest mass" – perhaps less than a "millionth as much as an electron" – so the gravitational force caused by neutrinos has so far proved too weak to detect, leaving the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
as the main method of detection: ;Neutral current: In a ''neutral current interaction'', the neutrino enters and then leaves the detector after having transferred some of its energy and momentum to a 'target' particle. If the target particle is charged and sufficiently lightweight (e.g. an electron), it might be accelerated to a relativistic speed and consequently emit Cherenkov radiation, which can be observed directly. All three neutrino
flavors Flavour or flavor is either the sensory perception of taste or smell, or a flavoring in food that produces such perception. Flavour or flavor may also refer to: Science * Flavors (programming language), an early object-oriented extension to L ...
, or flavours (electronic, muonic, and tauonic) can participate, regardless of the neutrino energy. However, no neutrino flavor information is left behind. ;Charged current: In a ''charged current interaction'', a high-energy neutrino transforms into its partner
lepton In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
(
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
,
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
, or tauon). However, if the neutrino does not have sufficient energy to create its heavier partner's mass, the charged current interaction is effectively unavailable to it. Neutrinos from the Sun and from nuclear reactors have enough energy to create electrons. Most accelerator-created neutrino beams can also create
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
s, and a very few can create tauons. A detector which can distinguish among these leptons can reveal the flavor of the neutrino incident to a charged current interaction; because the interaction involves the exchange of a W boson, the 'target' particle also changes (e.g., ).


Detection techniques


Scintillators

Antineutrinos were first detected near the Savannah River nuclear reactor by the Cowan–Reines neutrino experiment in 1956. Frederick Reines and Clyde Cowan used two targets containing a solution of cadmium chloride in water. Two scintillation detectors were placed next to the water targets. Antineutrinos with an energy above the threshold of 1.8 MeV caused charged current " Inverse beta decay" interactions with the protons in the water, producing positrons and neutrons. The resulting positrons annihilate with electrons, creating pairs of coincident photons with an energy of about 0.5 MeV each, which could be detected by the two scintillation detectors above and below the target. The neutrons were captured by cadmium nuclei, resulting in delayed gamma rays of about 8 MeV that were detected a few microseconds after the photons from a positron annihilation event. This experiment was designed by Cowan and Reines to give a unique signature for antineutrinos, to prove the existence of these particles. It was not the experimental goal to measure the total antineutrino flux. The detected antineutrinos thus all carried an energy greater than 1.8 MeV, which is the threshold for the reaction channel used (1.8 MeV is the energy needed to create a positron and a neutron from a proton). Only about 3% of the antineutrinos from a nuclear reactor carry enough energy for the reaction to occur. A more recently built and much larger KamLAND detector used similar techniques to study oscillations of antineutrinos from 53 Japanese nuclear power plants. A smaller, but more radiopure Borexino detector was able to measure the most important components of the neutrino spectrum from the Sun, as well as antineutrinos from Earth and nuclear reactors. The SNO+ experiment uses linear alkylbenzene as a liquid scintillator, in contrast to its predecessor Sudbury Neutrino Observatory which used heavy water and detected Cherenkov light (see below).


Radiochemical methods

Chlorine detectors, based on the method suggested by Bruno Pontecorvo, consist of a tank filled with a chlorine-containing fluid such as tetrachloroethylene. A neutrino occasionally converts a
chlorine Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
-37 atom into one of
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
-37 via the charged current interaction. The threshold neutrino energy for this reaction is 0.814 MeV. The fluid is periodically purged with
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
gas which would remove the argon. The helium is then cooled to separate out the argon, and the argon atoms are counted based on their
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
radioactive decays. A chlorine detector in the former Homestake Mine near Lead, South Dakota, containing 520  short tons (470  metric tons) of fluid, was the first to detect the solar neutrinos, and made the first measurement of the deficit of electron neutrinos from the sun (see Solar neutrino problem). A similar detector design, with a much lower detection threshold of 0.233 MeV, uses a transformation which is sensitive to lower-energy neutrinos. A neutrino is able to react with an atom of gallium-71, converting it into an atom of the unstable isotope germanium-71. The germanium was then chemically extracted and concentrated. Neutrinos were thus detected by measuring the radioactive decay of germanium. This latter method is
nickname A nickname, in some circumstances also known as a sobriquet, or informally a "moniker", is an informal substitute for the proper name of a person, place, or thing, used to express affection, playfulness, contempt, or a particular character trait ...
d the " Alsace-Lorraine" technique in a joke-reference to the reaction sequence. The SAGE experiment in Russia used about 50 tons of
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
, and the GALLEX / GNO experiments in Italy about 30 tons of
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
as reaction mass. The price of gallium is prohibitive, so this experiment is difficult to afford on large-scale. Larger experiments have therefore turned to a less costly reaction mass. Radiochemical detection methods are only useful for counting neutrinos; they provide almost no information on neutrino energy or direction of travel.


Cherenkov detectors

"Ring-imaging" Cherenkov detectors take advantage of a phenomenon called Cherenkov light. Cherenkov radiation is produced whenever charged particles such as electrons or muons are moving through a given detector medium somewhat faster than the speed of light in that medium. In a Cherenkov detector, a large volume of clear material such as water or ice is surrounded by light-sensitive photomultiplier tubes. A charged lepton produced with sufficient energy and moving through such a detector does travel somewhat faster than the speed of light in the detector medium (although somewhat slower than the speed of light in
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
). The charged lepton generates a visible "optical shockwave" of Cherenkov radiation. This radiation is detected by the photomultiplier tubes and shows up as a characteristic ring-like pattern of activity in the array of photomultiplier tubes. As neutrinos can interact with atomic nuclei to produce charged leptons which emit Cherenkov radiation, this pattern can be used to infer direction, energy, and (sometimes) flavor information about incident neutrinos. Two water-filled detectors of this type ( Kamiokande and IMB) recorded a neutrino burst from supernova SN 1987A. Scientists detected 19 neutrinos from an explosion of a star inside the Large Magellanic Cloud – only 19 out of the octo-decillion (1057) neutrinos emitted by the supernova. The Kamiokande detector was able to detect the burst of neutrinos associated with this supernova, and in 1988 it was used to directly confirm the production of solar neutrinos. The largest such detector is the water-filled
Super-Kamiokande Super-Kamiokande (abbreviation of Super-Kamioka Neutrino Detection Experiment, also abbreviated to Super-K or SK; ) is a neutrino detector, neutrino observatory located Kamioka Observatory, under Mount Ikeno near the city of Hida, Gifu, Hida, ...
. This detector uses 50,000 tons of pure water surrounded by 11,000 photomultiplier tubes buried 1 km underground. The Sudbury Neutrino Observatory (SNO) used 1,000 tonnes of ultrapure
heavy water Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
contained in a 12 metre-diameter vessel made of acrylic plastic surrounded by a cylinder of ultrapure ordinary water 22 metres in diameter and 34 metres high. In addition to the neutrino interactions visible in a regular water detector, a neutrino can break up the deuterium in heavy water. The resulting free neutron is subsequently captured, releasing a burst of gamma rays that can be detected. All three neutrino flavors participate equally in this dissociation reaction. The MiniBooNE detector employs pure
mineral oil Mineral oil is any of various colorless, odorless, light mixtures of higher alkanes from a mineral source, particularly a distillate of petroleum, as distinct from usually edible vegetable oils. The name 'mineral oil' by itself is imprecise, ...
as its detection medium. Mineral oil is a natural scintillator, so charged particles without sufficient energy to produce Cherenkov light still produce scintillation light. Low-energy muons and protons, invisible in water, can be detected. Thus the use of natural environment as a measurement medium emerged. Since the neutrino flux incoming to earth decreases with increasing energy, the size of neutrino detectors must increase too. Though building a kilometer-sized cube detector underground covered by thousands of photomultiplier would be prohibitively expensive, detection volumes of this magnitude can be achieved by installing Cherenkov detector arrays deep inside already existing natural water or ice formations, with several other advantages. Firstly, hundreds of meters of water or ice partly protect the detector from atmospheric muons. Secondly, these environments are transparent and dark, vital criteria in order to detect the faint Cherenkov light. In practice, because of Potassium 40 decay, even the abyss is not completely dark, so this decay must be used as a baseline. Located at a depth of about 2.5 km in the
Mediterranean Sea The Mediterranean Sea ( ) is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean basin and almost completely enclosed by land: on the east by the Levant in West Asia, on the north by Anatolia in West Asia and Southern Eur ...
, the ANTARES telescope (Astronomy with a Neutrino Telescope and Abyss environmental Research) has been fully operational since 30 May 2008. Consisting of an array of twelve separate 350 
meter The metre (or meter in US spelling; symbol: m) is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of of ...
-long vertical detector strings 70 meters apart, each with 75  photomultiplier optical modules, this detector uses the surrounding sea water as the detector medium. The next generation deep sea neutrino telescope KM3NeT will have a total instrumented volume of about 5 km3. The detector will be distributed over three installation sites in the Mediterranean. Implementation of the first phase of the telescope was started in 2013. The Antarctic Muon And Neutrino Detector Array (AMANDA) operated from 1996–2004. This detector used photomultiplier tubes mounted in strings buried deep (1.5–2 km) inside
Antarctic The Antarctic (, ; commonly ) is the polar regions of Earth, polar region of Earth that surrounds the South Pole, lying within the Antarctic Circle. It is antipodes, diametrically opposite of the Arctic region around the North Pole. The Antar ...
glacial ice near the
South Pole The South Pole, also known as the Geographic South Pole or Terrestrial South Pole, is the point in the Southern Hemisphere where the Earth's rotation, Earth's axis of rotation meets its surface. It is called the True South Pole to distinguish ...
. The ice itself is the detector medium. The direction of incident neutrinos is determined by recording the arrival time of individual
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s using a three-dimensional array of detector modules each containing one photomultiplier tube. This method allows detection of neutrinos above 50 GeV with a spatial resolution of approximately 2  degrees. AMANDA was used to generate neutrino maps of the northern sky to search for extraterrestrial neutrino sources and to search for
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
. AMANDA has been upgraded to the IceCube observatory, eventually increasing the volume of the detector array to one cubic kilometer. Ice Cube sits deep underneath the South Pole in a cubic kilometre of perfectly clear, bubble-free ancient ice. Like AMANDA it relies on detecting the flickers of light emitted on the exceedingly rare occasions when a neutrino does interact with an atom of ice or water.


Radio detectors

The Radio Ice Cherenkov Experiment uses antennas to detect Cherenkov radiation from high-energy neutrinos in Antarctica. The Antarctic Impulse Transient Antenna (ANITA) is a balloon-borne device flying over Antarctica and detecting Askaryan radiation, produced as cosmic ultra-high-energy neutrinos travel through the ice below and produce a shower of secondary charged particles, which emits a cone of coherent radiation in the radio or microwave part of the electromagnetic spectrum. Currently the Radio Neutrino Observatory Greenland is being built, exploiting the Askaryan effect in ice to detect neutrinos with energies >10 PeV.


Tracking calorimeters

Tracking calorimeters such as the
MINOS Main injector neutrino oscillation search (MINOS) was a particle physics experiment designed to study the phenomena of neutrino oscillations, first discovered by a Super-Kamiokande (Super-K) experiment in 1998. Neutrinos produced by the NuMI ...
detectors use alternating planes of absorber material and detector material. The absorber planes provide detector mass while the detector planes provide the tracking information. Steel is a popular absorber choice, being relatively dense and inexpensive and having the advantage that it can be magnetised. The active detector is often liquid or plastic scintillator, read out with photomultiplier tubes, although various kinds of ionisation chambers have also been used. The NOνA proposal suggests eliminating the absorber planes in favor of using a very large active detector volume. Tracking calorimeters are only useful for high-energy ( GeV range) neutrinos. At these energies, neutral current interactions appear as a shower of hadronic debris and charged current interactions are identified by the presence of the charged lepton's track (possibly alongside some form of hadronic debris). A muon produced in a charged current interaction leaves a long penetrating track and is easy to spot; The length of this muon track and its curvature in the magnetic field provide energy and charge ( versus ) information. An electron in the detector produces an electromagnetic shower, which can be distinguished from hadronic showers if the granularity of the active detector is small compared to the physical extent of the shower. Tau leptons decay essentially immediately to either another charged lepton or
pion In particle physics, a pion (, ) or pi meson, denoted with the Greek alphabet, Greek letter pi (letter), pi (), is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the ...
s, and cannot be observed directly in this kind of detector. (To directly observe taus, one typically looks for a kink in tracks in photographic emulsion.)


Coherent Recoil Detector

At low energies, a neutrino can scatter from the entire nucleus of an atom, rather than the individual nucleons, in a process known as '' coherent neutral current neutrino-nucleus elastic scattering'' or ''coherent neutrino scattering''. This effect has been used to make an extremely small neutrino detector. Unlike most other detection methods, coherent scattering does not depend on the flavor of the neutrino.


Background suppression

Most neutrino experiments must address the flux of
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s that bombard the Earth's surface. The higher-energy (>50 MeV or so) neutrino experiments often cover or surround the primary detector with a "veto" detector which reveals when a cosmic ray passes into the primary detector, allowing the corresponding activity in the primary detector to be ignored ("vetoed"). Since the atmospheric muon incident flux is isotropic, a localised and anisotropic detection is discriminated in relation to the background betraying a cosmic event. For lower-energy experiments, the cosmic rays are not directly the problem. Instead, the spallation neutrons and radioisotopes produced by the cosmic rays may mimic the desired signals. For these experiments, the solution is to place the detector deep underground so that the earth above can reduce the cosmic ray rate to acceptable levels.


Neutrino telescopes

Neutrino detectors can be aimed at astrophysics observations, since many astrophysical events are believed to emit neutrinos. Underwater neutrino telescopes: * DUMAND Project (1976–1995; cancelled) * Baikal Deep Underwater Neutrino Telescope (1993 on) * ANTARES (2006 on) * KM3NeT (under construction since 2013; , around 10% of the detector is taking data) * NESTOR Project (under development since 1998) * P-ONE (prospective telescope; path finders deployed in 2018, 2020) Under-ice neutrino telescopes: * AMANDA (1996–2009, superseded by IceCube) * IceCube (2004 on) * DeepCore and PINGU, an existing extension and a proposed extension of IceCube Underground neutrino observatories: * Baksan Neutrino Observatory, Russia, site of SAGE, GGNT and the future BLVSD. * Gran Sasso National Laboratories (LNGS), Italy, site of Borexino, CUORE, and other experiments. * Jiangmen Underground Neutrino Observatory (JUNO), Kaiping, Jiangmen, China * Soudan Mine, home of Soudan 2,
MINOS Main injector neutrino oscillation search (MINOS) was a particle physics experiment designed to study the phenomena of neutrino oscillations, first discovered by a Super-Kamiokande (Super-K) experiment in 1998. Neutrinos produced by the NuMI ...
, and CDMS * Kamioka Observatory, Japan, home of
Super-Kamiokande Super-Kamiokande (abbreviation of Super-Kamioka Neutrino Detection Experiment, also abbreviated to Super-K or SK; ) is a neutrino detector, neutrino observatory located Kamioka Observatory, under Mount Ikeno near the city of Hida, Gifu, Hida, ...
(Super-K) and its successor Hyper-Kamiokande, currently under construction. * Underground Neutrino Observatory, Mont Blanc, France / Italy *
Deep Underground Neutrino Experiment The Deep Underground Neutrino Experiment (DUNE) is a neutrino experiment under construction, with a near detector at Fermilab and a far detector at the Sanford Underground Research Facility that will observe neutrinos produced at Fermilab. An int ...
(DUNE), South Dakota, USA to Fermilab * Sudbury Neutrino Observatory (SNOLAB), Sudbury, Ontario, Canada Others: * GALLEX (1991–1997; ended) * Daya Bay Reactor Neutrino Experiment, (2011–2020), Daya bay, China * Tauwer experiment (construction date to be determined) * Antarctic Impulse Transient Antenna


See also

* List of neutrino experiments * Neutrino astronomy *
Multi-messenger astronomy Multi-messenger astronomy is the coordinated observation and interpretation of multiple signals received from the same astronomical event. Many types of cosmological events involve complex interactions between a variety of astrophysical processes, ...


Footnotes


References


External links

* {{DEFAULTSORT:Neutrino Detector Neutrino astronomy Neutrinos Particle detectors