HOME

TheInfoList



OR:

Neural stem cells (NSCs) are self-renewing,
multipotent Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
cells that firstly generate the radial glial progenitor cells that generate the
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
and
glia Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
of the
nervous system In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes ...
of all animals during
embryonic development An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm ...
. Some neural progenitor stem cells persist in highly restricted regions in the adult
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, with ...
brain and continue to produce neurons throughout life. Differences in the size of the central nervous system are among the most important distinctions between the species and thus mutations in the genes that regulate the size of the neural stem cell compartment are among the most important drivers of vertebrate evolution.
Stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of ...
s are characterized by their capacity to differentiate into multiple cell types. They undergo symmetric or
asymmetric cell division An asymmetric cell division produces two daughter cells with different cellular fates. This is in contrast to symmetric cell divisions which give rise to daughter cells of equivalent fates. Notably, stem cells divide asymmetrically to give rise to ...
into two daughter cells. In symmetric cell division, both daughter cells are also stem cells. In asymmetric division, a stem cell produces one stem cell and one specialized cell. NSCs primarily differentiate into
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
s,
astrocyte Astrocytes (from Ancient Greek , , "star" + , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of e ...
s, and
oligodendrocyte Oligodendrocytes (), or oligodendroglia, are a type of neuroglia whose main functions are to provide support and insulation to axons in the central nervous system of jawed vertebrates, equivalent to the function performed by Schwann cells in the ...
s.


Brain location

In the adult mammalian brain, the subgranular zone in the hippocampal dentate gyrus, the subventricular zone around the lateral ventricles, and the hypothalamus (precisely in the dorsal α1, α2 region and the "hypothalamic proliferative region”, located in the adjacent median eminence) have been reported to contain neural stem cells.


Development


''In vivo'' origin

There are two basic types of stem cell:
adult stem cells Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells (from Greek σωματικóς, ...
, which are limited in their ability to differentiate, and
embryonic stem cells Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre- implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist ...
(ESCs), which are
pluripotent Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
and have the capability of differentiating into any cell type. Neural stem cells are more specialized than ESCs because they only generate
radial glial cell Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and ...
s that give rise to the
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
s and to
glia Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
of the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
(CNS). During the
embryonic development An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm ...
of vertebrates, NSCs transition into
radial glial cell Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and ...
s (RGCs) also known as radial glial progenitor cells, (RGPs) and reside in a transient zone called the ventricular zone (VZ). Neurons are generated in large numbers by (RGPs) during a specific period of embryonic development through the process of
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NEC ...
, and continue to be generated in adult life in restricted regions of the adult brain. Adult NSCs differentiate into new neurons within the adult
subventricular zone The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone ...
(SVZ), a remnant of the embryonic germinal
neuroepithelium Neuroepithelial cells, or neuroectodermal cells, form the wall of the closed neural tube in early embryonic development. The neuroepithelial cells span the thickness of the tube's wall, connecting with the pial surface and with the ventricular or ...
, as well as the
dentate gyrus The dentate gyrus (DG) is part of the hippocampal formation in the temporal lobe of the brain, which also includes the hippocampus and the subiculum. The dentate gyrus is part of the hippocampal trisynaptic circuit and is thought to contribute t ...
of the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic syste ...
.


''In vitro'' origin

Adult NSCs were first isolated from mouse
striatum The striatum, or corpus striatum (also called the striate nucleus), is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives gluta ...
in the early 1990s. They are capable of forming multipotent neurospheres when cultured ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology a ...
''. Neurospheres can produce self-renewing and proliferating specialized cells. These neurospheres can differentiate to form the specified neurons, glial cells, and oligodendrocytes. In previous studies, cultured neurospheres have been transplanted into the brains of
immunodeficient Immunodeficiency, also known as immunocompromisation, is a state in which the immune system's ability to fight infectious diseases and cancer is compromised or entirely absent. Most cases are acquired ("secondary") due to extrinsic factors that a ...
neonatal mice and have shown engraftment, proliferation, and neural differentiation.


Communication and migration

NSCs are stimulated to begin differentiation via exogenous cues from the microenvironment, or stem cell niche. Some neural cells are migrated from the SVZ along the
rostral migratory stream The rostral migratory stream (RMS) is a specialized migratory route found in the brain of some animals along which neuronal precursors that originated in the subventricular zone (SVZ) of the brain migrate to reach the main olfactory bulb (OB ...
which contains a marrow-like structure with ependymal cells and astrocytes when stimulated. The ependymal cells and astrocytes form glial tubes used by migrating
neuroblasts In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
. The astrocytes in the tubes provide support for the migrating cells as well as insulation from electrical and chemical signals released from surrounding cells. The astrocytes are the primary precursors for rapid cell amplification. The neuroblasts form tight chains and migrate towards the specified site of cell damage to repair or replace neural cells. One example is a neuroblast migrating towards the
olfactory bulb The olfactory bulb (Latin: ''bulbus olfactorius'') is a neural structure of the vertebrate forebrain involved in olfaction, the sense of smell. It sends olfactory information to be further processed in the amygdala, the orbitofrontal cortex ...
to differentiate into periglomercular or granule neurons which have a radial migration pattern rather than a tangential one.


Aging

Neural stem cell proliferation declines as a consequence of
aging Ageing ( BE) or aging ( AE) is the process of becoming older. The term refers mainly to humans, many other animals, and fungi, whereas for example, bacteria, perennial plants and some simple animals are potentially biologically immortal. In ...
. Various approaches have been taken to counteract this age-related decline. Because
FOX proteins FOX (forkhead box) proteins are a family of transcription factors that play important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation, and longevity. Many FOX proteins are important to embryonic ...
regulate neural stem cell
homeostasis In biology, homeostasis ( British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
, FOX proteins have been used to protect neural stem cells by inhibiting Wnt signaling.


Function

Epidermal growth factor Epidermal growth factor (EGF) is a protein that stimulates cell growth and differentiation by binding to its receptor, EGFR. Human EGF is 6-k Da and has 53 amino acid residues and three intramolecular disulfide bonds. EGF was originally de ...
(EGF) and
fibroblast growth factor Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by macrophages; they are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in their ...
(FGF) are
mitogen A mitogen is a small bioactive protein or peptide that induces a cell to begin cell division, or enhances the rate of division (mitosis). Mitogenesis is the induction (triggering) of mitosis, typically via a mitogen. The mechanism of action of a ...
s that promote neural progenitor and stem cell growth ''in vitro'', though other factors synthesized by the neural progenitor and stem cell populations are also required for optimal growth. It is hypothesized that neurogenesis in the adult brain originates from NSCs. The origin and identity of NSCs in the adult brain remain to be defined.


During differentiation

The most widely accepted model of an adult NSC is a radial,
glial fibrillary acidic protein Glial fibrillary acidic protein (GFAP) is a protein that is encoded by the ''GFAP'' gene in humans. It is a type III intermediate filament (IF) protein that is expressed by numerous cell types of the central nervous system (CNS), including astro ...
-positive cell. Quiescent stem cells are Type B that are able to remain in the quiescent state due to the renewable tissue provided by the specific niches composed of blood vessels, astrocytes,
microglia Microglia are a type of neuroglia (glial cell) located throughout the brain and spinal cord. Microglia account for about 7% of cells found within the brain. As the resident macrophage cells, they act as the first and main form of active immune de ...
, ependymal cells, and extracellular matrix present within the brain. These niches provide nourishment, structural support, and protection for the stem cells until they are activated by external stimuli. Once activated, the Type B cells develop into Type C cells, active proliferating intermediate cells, which then divide into neuroblasts consisting of Type A cells. The undifferentiated neuroblasts form chains that migrate and develop into mature neurons. In the olfactory bulb, they mature into GABAergic granule neurons, while in the hippocampus they mature into dentate granule cells.


Epigenetic modification

Epigenetic modifications are important regulators of
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. T ...
in differentiating neural stem cells. Key epigenetic modifications include DNA cytosine methylation to form 5-methylcytosine and 5-methylcytosine demethylation. These types of modification are critical for cell fate determination in the developing and adult mammalian brain. DNA cytosine methylation is catalyzed by DNA methyltransferases (DNMTs). Methylcytosine demethylation is catalyzed in several distinct steps by TET enzymes that carry out oxidative reactions (e.g. 5-methylcytosine to 5-hydroxymethylcytosine) and enzymes of the DNA
base excision repair Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from ...
(BER) pathway.


During disease

NSCs have an important role during development producing the enormous diversity of neurons, astrocytes and oligodendrocytes in the developing CNS. They also have important role in adult animals, for instance in learning and hippocampal plasticity in the adult mice in addition to supplying neurons to the olfactory bulb in mice. Notably the role of NSCs during diseases is now being elucidated by several research groups around the world. The responses during
stroke A stroke is a disease, medical condition in which poor cerebral circulation, blood flow to the brain causes cell death. There are two main types of stroke: brain ischemia, ischemic, due to lack of blood flow, and intracranial hemorrhage, hemorr ...
,
multiple sclerosis Multiple (cerebral) sclerosis (MS), also known as encephalomyelitis disseminata or disseminated sclerosis, is the most common demyelinating disease, in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This ...
, and
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms beco ...
in animal models and humans is part of the current investigation. The results of this ongoing investigation may have future applications to treat human neurological diseases. Neural stem cells have been shown to engage in migration and replacement of dying
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
in classical experiments performed by Sanjay Magavi and
Jeffrey Macklis Jeffrey D. Macklis is an American neuroscientist. He is the Max and Anne Wien Professor of Life Sciences in the Department of Stem Cell and Regenerative Biology and Center for Brain Science at Harvard University, Professor of Neurology eurosciencea ...
. Using a laser-induced damage of cortical layers, Magavi showed that SVZ neural progenitors expressing Doublecortin, a critical molecule for migration of neuroblasts, migrated long distances to the area of damage and differentiated into mature neurons expressing
NeuN NeuN (Fox-3, Rbfox3, or Hexaribonucleotide Binding Protein-3), a protein which is a homologue to the protein product of a sex-determining gene in ''Caenorhabditis elegans'', is a neuronal nuclear antigen that is commonly used as a biomarker for ...
marker. In addition, Masato Nakafuku's group from Japan showed for the first time the role of hippocampal stem cells during stroke in mice. These results demonstrated that NSCs can engage in the adult brain as a result of injury. Furthermore, in 2004 Evan Y. Snyder's group showed that NSCs migrate to brain tumors in a directed fashion. Jaime Imitola, M.D and colleagues from Harvard demonstrated for the first time, a molecular mechanism for the responses of NSCs to injury. They showed that chemokines released during injury such as SDF-1a were responsible for the directed migration of human and mouse NSCs to areas of injury in mice. Since then other molecules have been found to participate in the responses of NSCs to injury. All these results have been widely reproduced and expanded by other investigators joining the classical work of Richard L. Sidman in autoradiography to visualize neurogenesis during development, and neurogenesis in the adult by Joseph Altman in the 1960s, as evidence of the responses of adult NSCs activities and neurogenesis during
homeostasis In biology, homeostasis ( British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
and injury. The search for additional mechanisms that operate in the injury environment and how they influence the responses of NSCs during acute and chronic disease is matter of intense research.


Research


Regenerative therapy of the CNS

Cell death is a characteristic of acute CNS disorders as well as neurodegenerative disease. The loss of cells is amplified by the lack of regenerative abilities for cell replacement and repair in the CNS. One way to circumvent this is to use cell replacement therapy via regenerative NSCs. NSCs can be cultured ''in vitro'' as neurospheres. These neurospheres are composed of neural stem cells and progenitors (NSPCs) with growth factors such as EGF and FGF. The withdrawal of these growth factors activate differentiation into neurons, astrocytes, or oligodendrocytes which can be transplanted within the brain at the site of injury. The benefits of this therapeutic approach have been examined in
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms beco ...
,
Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is a neurodegenerative disease that is mostly inherited. The earliest symptoms are often subtle problems with mood or mental abilities. A general lack of coordination and an uns ...
, and
multiple sclerosis Multiple (cerebral) sclerosis (MS), also known as encephalomyelitis disseminata or disseminated sclerosis, is the most common demyelinating disease, in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This ...
. NSPCs induce neural repair via intrinsic properties of neuroprotection and
immunomodulation Immunomodulation is modulation (regulatory adjustment) of the immune system. It has natural and human-induced forms, and thus the word can refer to the following: * Homeostasis in the immune system, whereby the system self-regulates to adjust immun ...
. Some possible routes of transplantation include intracerebral transplantation and
xenotransplantation Xenotransplantation (''xenos-'' from the Greek meaning "foreign" or strange), or heterologous transplant, is the transplantation of living cells, tissues or organs from one species to another. Such cells, tissues or organs are called xenograft ...
. An alternative therapeutic approach to the transplantation of NSPCs is the pharmacological activation of endogenous NSPCs (eNSPCs). Activated eNSPCs produce neurotrophic factors, several treatments that activate a pathway that involves the phosphorylation of STAT3 on the serine residue and subsequent elevation of Hes3 expression ( STAT3-Ser/Hes3 Signaling Axis) oppose neuronal death and disease progression in models of neurological disorder.


Generation of 3D ''in vitro'' models of the human CNS

Human
midbrain The midbrain or mesencephalon is the forward-most portion of the brainstem and is associated with vision, hearing, motor control, sleep and wakefulness, arousal ( alertness), and temperature regulation. The name comes from the Greek ''mesos'', ...
-derived neural progenitor cells (hmNPCs) have the ability to differentiate down multiple neural cell lineages that lead to neurospheres as well as multiple neural phenotypes. The hmNPC can be used to develop a 3D ''in vitro'' model of the human CNS. There are two ways to culture the hmNPCs, the adherent monolayer and the neurosphere culture systems. The neurosphere culture system has previously been used to isolate and expand CNS stem cells by its ability to aggregate and proliferate hmNPCs under serum-free media conditions as well as with the presence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2). Initially, the hmNPCs were isolated and expanded before performing a 2D differentiation which was used to produce a single-cell suspension. This single-cell suspension helped achieve a homogenous 3D structure of uniform aggregate size. The 3D aggregation formed neurospheres which was used to form an ''in vitro'' 3D CNS model.


Bioactive scaffolds as traumatic brain injury treatment

Traumatic brain injury A traumatic brain injury (TBI), also known as an intracranial injury, is an injury to the brain caused by an external force. TBI can be classified based on severity (ranging from mild traumatic brain injury TBI/concussionto severe traumatic br ...
(TBI) can deform the brain tissue, leading to
necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated diges ...
primary damage which can then cascade and activate secondary damage such as
excitotoxicity In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate ...
,
inflammation Inflammation (from la, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molec ...
,
ischemia Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems w ...
, and the breakdown of the blood-brain-barrier. Damage can escalate and eventually lead to
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes ( morphology) and death. These changes in ...
or cell death. Current treatments focus on preventing further damage by stabilizing bleeding, decreasing intracranial pressure and inflammation, and inhibiting pro-apoptotic cascades. In order to repair TBI damage, an upcoming therapeutic option involves the use of NSCs derived from the embryonic peri- ventricular region. Stem cells can be cultured in a favorable 3-dimensional, low
cytotoxic Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (''Bitis arietans'') or brown recluse spider (''Loxosceles reclusa''). Cell physiology Treating c ...
environment, a
hydrogel A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels ar ...
, that will increase NSC survival when injected into TBI patients. The intracerebrally injected, primed NSCs were seen to migrate to damaged tissue and differentiate into oligodendrocytes or neuronal cells that secreted neuroprotective factors.


Galectin-1 in neural stem cells

Galectin-1 Galectin-1 is a protein that in humans is encoded by the ''LGALS1'' gene. Gene and protein LGALS1 contains four exons. The galectin-1 protein is 135 amino acids in length and highly conserved across species. It can be found in the nucleus, the ...
is expressed in adult NSCs and has been shown to have a physiological role in the treatment of neurological disorders in animal models. There are two approaches to using NSCs as a therapeutic treatment: (1) stimulate intrinsic NSCs to promote proliferation in order to replace injured tissue, and (2) transplant NSCs into the damaged brain area in order to allow the NSCs to restore the tissue.
Lentivirus ''Lentivirus'' is a genus of retroviruses that cause chronic and deadly diseases characterized by long incubation periods, in humans and other mammalian species. The genus includes the human immunodeficiency virus (HIV), which causes AIDS. L ...
vectors were used to infect human NSCs (hNSCs) with Galectin-1 which were later transplanted into the damaged tissue. The hGal-1-hNSCs induced better and faster brain recovery of the injured tissue as well as a reduction in motor and sensory deficits as compared to only hNSC transplantation.


Assays

Neural stem cells are routinely studied ''in vitro'' using a method referred to as the Neurosphere Assay (or Neurosphere culture system), first developed by Reynolds and Weiss. Neurospheres are intrinsically heterogeneous cellular entities almost entirely formed by a small fraction (1 to 5%) of slowly dividing neural stem cells and by their progeny, a population of fast-dividing nestin-positive progenitor cells. The total number of these progenitors determines the size of a neurosphere and, as a result, disparities in sphere size within different neurosphere populations may reflect alterations in the proliferation, survival and/or differentiation status of their neural progenitors. Indeed, it has been reported that loss of β1-
integrin Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle ...
in a neurosphere culture does not significantly affect the capacity of β1-integrin deficient stem cells to form new neurospheres, but it influences the size of the neurosphere: β1-integrin deficient neurospheres were overall smaller due to increased cell death and reduced proliferation. While the Neurosphere Assay has been the method of choice for isolation, expansion and even the enumeration of neural stem and progenitor cells, several recent publications have highlighted some of the limitations of the neurosphere culture system as a method for determining neural stem cell frequencies. In collaboration with Reynolds, STEMCELL Technologies has developed a
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
-based assay, called the Neural Colony-Forming Cell (NCFC) Assay, for the quantification of neural stem cells. Importantly, this assay allows discrimination between neural stem and progenitor cells.


History

The first evidence that neurogenesis occurs in certain regions of the adult mammalian brain came from Hthymidine labeling studies conducted by Altman and Das in 1965 which showed postnatal hippocampal neurogenesis in young rats. In 1989,
Sally Temple Sally Temple is an American developmental neuroscientist in Albany, New York. She is a co-founder and scientific director for The Neural Stem Cell Institute and is a professor of Neuroscience and Neuropharmacology at Albany Medical College Templ ...
described multipotent, self-renewing progenitor and stem cells in the
subventricular zone The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone ...
(SVZ) of the mouse brain. In 1992, Brent A. Reynolds and Samuel Weiss were the first to isolate neural
progenitor In genealogy, the progenitor (rarer: primogenitor; german: Stammvater or ''Ahnherr'') is the – sometimes legendary – founder of a family, line of descent, clan or tribe, noble house, or ethnic group.. Ebenda''Ahnherr:''"Stammvater eines ...
and stem cells from the adult striatal tissue, including the SVZ — one of the neurogenic areas — of adult mice brain tissue. In the same year the team of Constance Cepko and Evan Y. Snyder were the first to isolate multipotent cells from the mouse cerebellum and stably transfected them with the
oncogene An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
v-myc. This molecule is one of the genes widely used now to reprogram adult non-stem cells into pluripotent stem cells. Since then, neural progenitor and stem cells have been isolated from various areas of the adult central nervous system, including non-neurogenic areas, such as the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
, and from various species including humans.


See also

* Induced pluripotent stem cells *
List of human cell types derived from the germ layers This is a list of cells in humans derived from the three embryonic germ layers – ectoderm, mesoderm, and endoderm. Cells derived from ectoderm Surface ectoderm Skin * Trichocyte * Keratinocyte Anterior pituitary * Gonadotrope * Corti ...


References

*


External links

* {{Authority control Stem cells Nervous tissue cells