monomial form
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
the monomial basis of a
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
is its basis (as a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
or
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fiel ...
over the field or ring of
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves ...
s) that consists of all
monomial In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer expon ...
s. The monomials form a basis because every
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
may be uniquely written as a finite linear combination of monomials (this is an immediate consequence of the definition of a polynomial).


One indeterminate

The
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
of
univariate polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
s over a field is a -vector space, which has 1, x, x^2, x^3, \ldots as an (infinite) basis. More generally, if is a ring then is a
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fiel ...
which has the same basis. The polynomials of degree at most form also a vector space (or a free module in the case of a ring of coefficients), which has 1, x, x^2, \ldots as a basis. The canonical form of a polynomial is its expression on this basis: a_0 + a_1 x + a_2 x^2 + \dots + a_d x^d, or, using the shorter sigma notation: \sum_^d a_ix^i. The monomial basis is naturally
totally ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive ...
, either by increasing degrees 1 < x < x^2 < \cdots, or by decreasing degrees 1 > x > x^2 > \cdots.


Several indeterminates

In the case of several indeterminates x_1, \ldots, x_n, a
monomial In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer expon ...
is a product x_1^x_2^\cdots x_n^, where the d_i are non-negative
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s. As x_i^0 = 1, an exponent equal to zero means that the corresponding indeterminate does not appear in the monomial; in particular 1 = x_1^0 x_2^0\cdots x_n^0 is a monomial. Similar to the case of univariate polynomials, the polynomials in x_1, \ldots, x_n form a vector space (if the coefficients belong to a field) or a free module (if the coefficients belong to a ring), which has the set of all monomials as a basis, called the monomial basis. The
homogeneous polynomial In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; ...
s of degree d form a subspace which has the monomials of degree d = d_1+\cdots+d_n as a basis. The
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
of this subspace is the number of monomials of degree d, which is \binom = \frac, where \binom is a
binomial coefficient In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ...
. The polynomials of degree at most d form also a subspace, which has the monomials of degree at most d as a basis. The number of these monomials is the dimension of this subspace, equal to \binom= \binom=\frac{n!}. In contrast to the univariate case, there is no natural
total order In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive ...
of the monomial basis in the multivariate case. For problems which require choosing a total order, such as Gröbner basis computations, one generally chooses an ''admissible''
monomial order In mathematics, a monomial order (sometimes called a term order or an admissible order) is a total order on the set of all ( monic) monomials in a given polynomial ring, satisfying the property of respecting multiplication, i.e., * If u \leq v and ...
– that is, a total order on the set of monomials such that m and 1 \leq m for every monomial m, n, q.


See also

* Horner's method *
Polynomial sequence In mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial. Polynomial sequences are a topic of interest in ...
* Newton polynomial * Lagrange polynomial * Legendre polynomial *
Bernstein form In the mathematical field of numerical analysis, a Bernstein polynomial is a polynomial that is a linear combination of Bernstein basis polynomials. The idea is named after Sergei Natanovich Bernstein. A numerically stable way to evaluate po ...
* Chebyshev form Algebra Polynomials