HOME

TheInfoList



OR:

A millimetre of mercury is a
manometric Pressure measurement is the measurement of an applied force by a fluid ( liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pre ...
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (alb ...
of
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and ...
, formerly defined as the extra pressure generated by a column of mercury one
millimetre file:EM Spectrum Properties edit.svg, 330px, Different lengths as in respect to the electromagnetic spectrum, measured by the metre and its derived scales. The microwave is between 1 meter to 1 millimeter. The millimetre (American and British Eng ...
high, and currently defined as exactly
pascal Pascal, Pascal's or PASCAL may refer to: People and fictional characters * Pascal (given name), including a list of people with the name * Pascal (surname), including a list of people and fictional characters with the name ** Blaise Pascal, Frenc ...
s. It is denoted mmHg or mm Hg. Although not an SI unit, the millimetre of mercury is still routinely used in medicine, meteorology, aviation, and many other scientific fields. One millimetre of mercury is approximately 1
Torr The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ). Historically, one torr was intended to be the same as one "millimeter of mercu ...
, which is of standard
atmospheric pressure Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, ...
( ≈ ). Although the two units are not equal, the
relative difference In any quantitative science, the terms relative change and relative difference are used to compare two quantities while taking into account the "sizes" of the things being compared, i.e. dividing by a ''standard'' or ''reference'' or ''starting'' va ...
(less than ) is negligible for most practical uses.


History

For much of human history, the pressure of gases like air was ignored, denied, or taken for granted, but as early as the 6th century BC, Greek philosopher Anaximenes of
Miletus Miletus (; gr, Μῑ́λητος, Mī́lētos; Hittite transcription ''Millawanda'' or ''Milawata'' (exonyms); la, Mīlētus; tr, Milet) was an ancient Greek city on the western coast of Anatolia, near the mouth of the Maeander River in ...
claimed that all things are made of air that is simply changed by varying levels of pressure. He could observe water evaporating, changing to a gas, and felt that this applied even to solid matter. More condensed air made colder, heavier objects, and expanded air made lighter, hotter objects. This was akin to how gases become less dense when warmer and more dense when cooler. In the 17th century,
Evangelista Torricelli Evangelista Torricelli ( , also , ; 15 October 160825 October 1647) was an Italian physicist and mathematician, and a student of Galileo. He is best known for his invention of the barometer, but is also known for his advances in optics and work o ...
conducted experiments with mercury that allowed him to measure the presence of air. He would dip a glass tube, closed at one end, into a bowl of mercury and raise the closed end up out of it, keeping the open end submerged. The weight of the mercury would pull it down, leaving a partial vacuum at the far end. This validated his belief that air/gas has mass, creating pressure on things around it. Previously, the more popular conclusion, even for
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
, was that air was weightless and it is vacuum that provided force, as in a siphon. The discovery helped bring Torricelli to the conclusion: This test, known as
Torricelli's experiment Torricelli's experiment was invented in Pisa in 1643 by the Italian scientist Evangelista Torricelli (1608-1647). The purpose of his experiment is to prove that the source of vacuum comes from atmospheric pressure. Context For much of human hist ...
, was essentially the first documented pressure gauge.
Blaise Pascal Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic writer. He was a child prodigy who was educated by his father, a tax collector in Rouen. Pascal's earliest m ...
went farther, having his brother-in-law try the experiment at different altitudes on a mountain, and finding indeed that the farther down in the ocean of atmosphere, the higher the pressure. Mercury manometers were the first accurate pressure gauges. They are less used today due to mercury's toxicity, the mercury column's sensitivity to temperature and local gravity, and the greater convenience of other instrumentation. They displayed the pressure difference between two fluids as a vertical difference between the mercury levels in two connected reservoirs. An actual mercury column reading may be converted to more fundamental units of pressure by multiplying the difference in height between two mercury levels by the density of mercury and the local gravitational acceleration. Because the
specific weight The specific weight, also known as the unit weight, is the weight per unit volume of a material. A commonly used value is the specific weight of water on Earth at , which is .National Council of Examiners for Engineering and Surveying (2005). ''Fu ...
of mercury depends on temperature and
surface gravity The surface gravity, ''g'', of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experien ...
, both of which vary with local conditions, specific standard values for these two parameters were adopted. This resulted in defining a "millimetre of mercury" as the pressure exerted at the base of a column of mercury 1 millimetre high with a precise density of when the acceleration due to gravity is exactly . The density chosen for this definition is the approximate density of mercury at , and is
standard gravity The standard acceleration due to gravity (or standard acceleration of free fall), sometimes abbreviated as standard gravity, usually denoted by or , is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. ...
. The use of an actual column of mercury to measure pressure normally requires correction for the density of mercury at the actual temperature and the sometimes significant variation of gravity with location, and may be further corrected to take account of the density of the measured air, water or other fluid. Each millimetre of mercury can be divided into 1000
micrometre The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer ( American spelling), also commonly known as a micron, is a unit of length in the International System of Uni ...
s of mercury, denoted ''μmHg'' or simply ''microns''.


Relation to the torr

The precision of modern transducers is often insufficient to show the difference between the torr and the millimetre of mercury. The difference between these two units is about one part in seven million or . By the same factor, a millitorr is slightly less than a micrometre of mercury.


Use in medicine and physiology

In medicine, pressure is still generally measured in millimetres of mercury. These measurements are in general given relative to the current atmospheric pressure: for example, a blood pressure of 120 mmHg, when the current atmospheric pressure is 760 mmHg, means 880 mmHg relative to perfect vacuum. Routine pressure measurements in medicine include: * Blood pressure, measured with a
sphygmomanometer A sphygmomanometer ( ), a blood pressure monitor, or blood pressure gauge, is a device used to measure blood pressure, composed of an inflatable cuff to collapse and then release the artery under the cuff in a controlled manner, and a mercury ...
* Intraocular pressure, with a
tonometer Tonometry is the procedure eye care professionals perform to determine the intraocular pressure (IOP), the fluid pressure inside the eye. It is an important test in the evaluation of patients at risk from glaucoma. Most tonometers are calibrated ...
*
Cerebrospinal fluid Cerebrospinal fluid (CSF) is a clear, colorless body fluid found within the tissue that surrounds the brain and spinal cord of all vertebrates. CSF is produced by specialised ependymal cells in the choroid plexus of the ventricles of the b ...
pressure *
Intracranial pressure Intracranial pressure (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the brain tissue. ICP is measured in millimeters of mercury ( mmHg) and at rest, is normally 7–15 mmHg for a supine adult. ...
* Intramuscular pressure ( compartment syndrome) *
Central venous pressure Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of the heart. CVP reflects the amount of blood returning to the heart and the ability of the heart to pump the blood back into the arterial system. CVP i ...
*
Pulmonary artery catheter A pulmonary artery catheter (PAC), also known as a Swan-Ganz catheter or right heart catheter, is a balloon-tipped catheter that is inserted into a pulmonary artery in a procedure known as pulmonary artery catheterization or right heart cathete ...
ization *
Mechanical ventilation Mechanical ventilation, assisted ventilation or intermittent mandatory ventilation (IMV), is the medical term for using a machine called a ventilator to fully or partially provide artificial ventilation. Mechanical ventilation helps move ai ...
In physiology
manometric Pressure measurement is the measurement of an applied force by a fluid ( liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pre ...
units are used to measure
Starling forces The Starling equation describes the net flow of fluid across a semipermeable membrane. It is named after Ernest Starling. It describes the balance between capillary pressure, interstitial pressure, and osmotic pressure. The classic Starling equa ...
.


See also

*
Bar (unit) The bar is a metric unit of pressure, but not part of the International System of Units (SI). It is defined as exactly equal to 100,000  Pa (100 kPa), or slightly less than the current average atmospheric pressure on Earth at sea lev ...
*
Inch of mercury Inch of mercury (inHg and ″Hg) is a non- SI unit of measurement for pressure. It is used for barometric pressure in weather reports, refrigeration and aviation in the United States. It is the pressure exerted by a column of mercury in heigh ...
*
Inch of water Inches of water is a non- SI unit for pressure. It is also given as inches of water gauge (iwg or in.w.g.), inches water column (inch wc, in. WC, " wc, etc. or just wc or WC), inAq, Aq, or inHO. The units are conventionally used for measurement o ...
*
Pound per square inch The pound per square inch or, more accurately, pound-force per square inch (symbol: lbf/in2; abbreviation: psi) is a unit of pressure or of stress based on avoirdupois units. It is the pressure resulting from a force of one pound-force applied to ...
*
Torr The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ). Historically, one torr was intended to be the same as one "millimeter of mercu ...


References

{{reflist Units of pressure Mercury (element)