HOME

TheInfoList



OR:

Microdialysis is a minimally-invasive sampling technique that is used for continuous measurement of free, unbound analyte concentrations in the
extracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
fluid of virtually any tissue. Analytes may include endogenous molecules (e.g.
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neu ...
,
hormones A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
,
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
, etc.) to assess their biochemical functions in the body, or exogenous compounds (e.g.
pharmaceuticals A medication (also called medicament, medicine, pharmaceutical drug, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the medical field and re ...
) to determine their distribution within the body. The microdialysis technique requires the insertion of a small microdialysis catheter (also referred to as microdialysis probe) into the tissue of interest. The microdialysis probe is designed to mimic a blood capillary and consists of a shaft with a
semipermeable Semipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecul ...
hollow fiber membrane at its tip, which is connected to inlet and outlet tubing. The probe is continuously perfused with an aqueous solution (perfusate) that closely resembles the (ionic) composition of the surrounding tissue fluid at a low flow rate of approximately 0.1-5μL/min. Once inserted into the tissue or (body)fluid of interest, small solutes can cross the semipermeable membrane by passive
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical ...
. The direction of the analyte flow is determined by the respective concentration gradient and allows the usage of microdialysis probes as sampling as well as delivery tools. The solution leaving the probe (dialysate) is collected at certain time intervals for analysis.


History

The microdialysis principle was first employed in the early 1960s, when push-pull canulas and dialysis sacs were implanted into animal tissues, especially into rodent brains, to directly study the tissues' biochemistry. While these techniques had a number of experimental drawbacks, such as the number of samples per animal or no/limited time resolution, the invention of continuously perfused dialytrodes in 1972 helped to overcome some of these limitations. Further improvement of the dialytrode concept resulted in the invention of the "hollow fiber", a tubular semipermeable membrane with a diameter of ~200-300μm, in 1974. Today's most prevalent shape, the needle probe, consists of a shaft with a hollow fiber at its tip and can be inserted by means of a guide cannula into the brain and other tissues. An alternative method, open flow micro-perfusion (OFM), replaces the membrane with macroscopic openings which facilitates sampling of lipophilic and hydrophilic compounds, protein bound and unbound drugs,
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neu ...
s,
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
s and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s,
antibodies An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of ...
,
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
s and nanocarriers,
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s and
vesicle Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry) In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form nat ...
s.


Microdialysis probes

There are a variety of probes with different membrane and shaft length combinations available. The molecular weight cutoff of commercially available microdialysis probes covers a wide range of approximately 6-100kD, but also 1MD is available. While water-soluble compounds generally diffuse freely across the microdialysis membrane, the situation is not as clear for highly lipophilic analytes, where both successful (e.g. corticosteroids) and unsuccessful microdialysis experiments (e.g. estradiol, fusidic acid) have been reported. However, the recovery of water-soluble compounds usually decreases rapidly if the molecular weight of the analyte exceeds 25% of the membrane’s molecular weight cutoff.


Recovery and calibration methods

Due to the constant
perfusion Perfusion is the passage of fluid through the circulatory system or lymphatic system to an organ or a tissue, usually referring to the delivery of blood to a capillary bed in tissue. Perfusion is measured as the rate at which blood is deliver ...
of the microdialysis probe with fresh perfusate, a total equilibrium cannot be established. This results in dialysate concentrations that are lower than those measured at the distant sampling site. In order to correlate concentrations measured in the dialysate with those present at the distant sampling site, a calibration factor (recovery) is needed. The recovery can be determined at steady-state using the constant rate of analyte exchange across the microdialysis membrane. The rate at which an analyte is exchanged across the semipermeable membrane is generally expressed as the analyte’s extraction efficiency. The extraction efficiency is defined as the ratio between the loss/gain of analyte during its passage through the probe (Cin−Cout) and the difference in concentration between perfusate and distant sampling site (Cin−Csample). In theory, the extraction efficiency of a microdialysis probe can be determined by: 1) changing the drug concentrations while keeping the flow rate constant or 2) changing the flow rate while keeping the respective drug concentrations constant. At steady-state, the same extraction efficiency value is obtained, no matter if the analyte is enriched or depleted in the perfusate. Microdialysis probes can consequently be calibrated by either measuring the loss of analyte using drug-containing perfusate or the gain of analyte using drug-containing sample solutions. To date, the most frequently used calibration methods are the low-flow-rate method, the no-net-flux method, the dynamic (extended) no-net-flux method, and the retrodialysis method. The proper selection of an appropriate calibration method is critically important for the success of a microdialysis experiment. Supportive
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology a ...
experiments prior to the use in animals or humans are therefore recommended. In addition, the recovery determined in vitro may differ from the recovery in humans. Its actual value therefore needs to be determined in every in vivo experiment.


Low-flow-rate method

The low-flow-rate method is based on the fact that the extraction efficiency is dependent on the flow-rate. At high flow-rates, the amount of drug diffusing from the sampling site into the dialysate per unit time is smaller (low extraction efficiency) than at lower flow-rates (high extraction efficiency). At a flow-rate of zero, a total equilibrium between these two sites is established (Cout = Csample). This concept is applied for the (low-)flow-rate method, where the probe is perfused with blank perfusate at different flow-rates. Concentration at the sampling site can be determined by plotting the extraction ratios against the corresponding flow-rates and extrapolating to zero-flow. The low-flow-rate method is limited by the fact that calibration times may be rather long before a sufficient sample volume has been collected.


No-net-flux-method

During calibration with the no-net-flux-method, the microdialysis probe is perfused with at least four different concentrations of the analyte of interest (Cin) and steady-state concentrations of the analyte leaving the probe are measured in the dialysate (Cout). The recovery for this method can be determined by plotting Cout−Cin over Cin and computing the slope of the regression line. If analyte concentrations in the perfusate are equal to concentrations at the sampling site, no-net flux occurs. Respective concentrations at the no-net-flux point are represented by the x-intercept of the regression line. The strength of this method is that, at steady-state, no assumptions about the behaviour of the compound in the vicinity of the probe have to be made, since equilibrium exists at a specific time and place. However, under transient conditions (e.g. after drug challenge), the probe recovery may be altered resulting in biased estimates of the concentrations at the sampling site. To overcome this limitation, several approaches have been developed that are also applicable under non-steady-state conditions. One of these approaches is the dynamic no-net-flux method.


Dynamic no-net-flux method

While a single subject/animal is perfused with multiple concentrations during the no-net-flux method, multiple subjects are perfused with a single concentration during the dynamic no-net-flux (DNNF) method. Data from the different subjects/animals is then combined at each time point for regression analysis allowing determination of the recovery over time. The design of the DNNF calibration method has proven very useful for studies that evaluate the response of endogenous compounds, such as neurotransmitters, to drug challenge.


Retrodialysis

During retrodialysis, the microdialysis probe is perfused with an analyte-containing solution and the disappearance of drug from the probe is monitored. The recovery for this method can be computed as the ratio of drug lost during passage (Cin−Cout) and drug entering the microdialysis probe (Cin). In principle, retrodialysis can be performed using either the analyte itself (retrodialysis by drug) or a reference compound (retrodialysis by calibrator) that closely resembles both the physiochemical and the biological properties of the analyte. Despite the fact that retrodialysis by drug cannot be used for endogenous compounds as it requires absence of analyte from the sampling site, this calibration method is most commonly used for exogenous compounds in clinical settings.


Applications

The microdialysis technique has undergone much development since its first use in 1972, when it was first employed to monitor concentrations of endogenous biomolecules in the brain. Today's area of application has expanded to monitoring free concentrations of endogenous as well as exogenous compounds in virtually any tissue. Although microdialysis is still primarily used in preclinical animal studies (e.g. laboratory rodents, dogs, sheep, pigs), it is now increasingly employed in humans to monitor free, unbound drug tissue concentrations as well as interstitial concentrations of regulatory cytokines and metabolites in response to homeostatic perturbations such as feeding and/or exercise. When employed in brain research, microdialysis is commonly used to measure neurotransmitters (e.g.
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80% o ...
,
serotonin Serotonin () or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter. Its biological function is complex and multifaceted, modulating mood, cognition, reward, learning, memory, and numerous physiological processes such as vomiting and va ...
,
norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin '' ad ...
,
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
,
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synt ...
, GABA) and their metabolites, as well as small neuromodulators (e.g.
cAMP Camp may refer to: Outdoor accommodation and recreation * Campsite or campground, a recreational outdoor sleeping and eating site * a temporary settlement for nomads * Camp, a term used in New England, Northern Ontario and New Brunswick to descri ...
, cGMP, NO),
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
(e.g.
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
,
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
,
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the G ...
), and energy substrates (e.g.
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
,
lactate Lactate may refer to: * Lactation, the secretion of milk from the mammary glands * Lactate, the conjugate base of lactic acid Lactic acid is an organic acid. It has a molecular formula . It is white in the solid state and it is miscible with w ...
,
pyruvate Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic a ...
). Exogenous drugs to be analyzed by microdialysis include new
antidepressants Antidepressants are a class of medication used to treat major depressive disorder, anxiety disorders, chronic pain conditions, and to help manage addictions. Common side-effects of antidepressants include dry mouth, weight gain, dizziness, hea ...
,
antipsychotics Antipsychotics, also known as neuroleptics, are a class of psychotropic medication primarily used to manage psychosis (including delusions, hallucinations, paranoia or disordered thought), principally in schizophrenia but also in a range of ...
, as well as
antibiotics An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and preventio ...
and many other drugs that have their pharmacological effect site in the brain. The first non-metabolite to be analyzed by microdialysis in vivo in the human brain was
rifampicin Rifampicin, also known as rifampin, is an ansamycin antibiotic used to treat several types of bacterial infections, including tuberculosis (TB), ''Mycobacterium avium'' complex, leprosy, and Legionnaires’ disease. It is almost always used t ...
. Applications in other organs include the skin (assessment of
bioavailability In pharmacology, bioavailability is a subcategory of absorption and is the fraction (%) of an administered drug that reaches the systemic circulation. By definition, when a medication is administered intravenously, its bioavailability is 100%. Ho ...
and
bioequivalence Bioequivalence is a term in pharmacokinetics used to assess the expected in vivo biological equivalence of two proprietary preparations of a drug. If two products are said to be bioequivalent it means that they would be expected to be, for all ...
of topically applied dermatological drug products), and monitoring of glucose concentrations in patients with diabetes (intravascular or subcutaneous probe placement). The latter may even be incorporated into an artificial pancreas system for automated insulin administration. Microdialysis has also found increasing application in environmental research, sampling a diversity of compounds from waste-water and soil solution, including saccharides, metal ions, micronutrients, organic acids, and low molecular weight nitrogen. Given the destructive nature of conventional soil sampling methods, microdialysis has potential to estimate fluxes of soil ions that better reflect an undisturbed soil environment.


Critical analysis


Advantages

# To date, microdialysis is the only
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and p ...
sampling technique that can continuously monitor drug or metabolite concentrations in the extracellular fluid of virtually any tissue. Depending on the exact application, analyte concentrations can be monitored over several hours, days, or even weeks. Free, unbound extracellular tissue concentrations are in many cases of particular interest as they resemble pharmacologically active concentrations at or close to the site of action. Combination of microdialysis with modern imaging techniques, such
positron emission tomography Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, ...
, further allow for determination of intracellular concentrations. # Insertion of the probe in a precise location of the selected tissue further allows for evaluation of extracellular concentration gradients due to transporter activity or other factors, such as perfusion differences. It has, therefore, been suggested as the most appropriate technique to be used for tissue distribution studies. # Exchange of analyte across the semipermeable membrane and constant replacement of the sampling fluid with fresh perfusate prevents drainage of fluid from the sampling site, which allows sampling without fluid loss. Microdialysis can consequently be used without disturbing the tissue conditions by local fluid loss or pressure artifacts, which can occur when using other techniques, such as microinjection or push-pull perfusion. # The semipermeable membrane prevents cells, cellular debris, and proteins from entering into the dialysate. Due to the lack of protein in the dialysate, a sample clean-up prior to analysis is not needed and enzymatic degradation is not a concern.


Limitations

# Despite scientific advances in making microdialysis probes smaller and more efficient, the invasive nature of this technique still poses some practical and ethical limitations. For example, it has been shown that implantation of a microdialysis probe can alter tissue morphology resulting in disturbed microcirculation, rate of metabolism or integrity of physiological barriers, such as the
blood–brain barrier The blood–brain barrier (BBB) is a highly selective semipermeable border of endothelial cells that prevents solutes in the circulating blood from ''non-selectively'' crossing into the extracellular fluid of the central nervous system where ne ...
. While acute reactions to probe insertion, such as implantation traumas, require sufficient recovery time, additional factors, such as
necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated diges ...
, inflammatory responses, or wound healing processes have to be taken into consideration for long-term sampling as they may influence the experimental outcome. From a practical perspective, it has been suggested to perform microdialysis experiments within an optimal time window, usually 24–48 hours after probe insertion. # Microdialysis has a relatively low temporal and spatial resolution compared to, for example, electrochemical
biosensors A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
. While the temporal resolution is determined by the length of the sampling intervals (usually a few minutes), the spatial resolution is determined by the dimensions of the probe. The probe size can vary between different areas of application and covers a range of a few millimeters (intracerebral application) up to a few centimeters ( subcutaneous application) in length and a few hundred micrometers in diameter. # Application of the microdialysis technique is often limited by the determination of the probe’s recovery, especially for
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and p ...
experiments. Determination of the recovery may be time-consuming and may require additional subjects or pilot experiments. The recovery is largely dependent on the flow rate: the lower the flow rate, the higher the recovery. However, in practice the flow rate cannot be decreased too much since either the sample volume obtained for analysis will be insufficient or the temporal resolution of the experiment will be lost. It is therefore important to optimize the relationship between flow rate and the sensitivity of the analytical assay. The situation may be more complex for lipophilic compounds as they can stick to the tubing or other probe components, resulting in a low or no analyte recovery.


References

{{Reflist Biochemistry methods Cell biology Membrane technology