A mathematical object is an abstract concept arising in

topological space
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers ( and ), formulas and related structures (), shapes and spaces in which they are contained (), and quantities and their changes ( and ). There is no gener ...

s and

Proof and Other Dilemmas: Mathematics and Philosophy

'. Mathematical Association of America. * Hersh, Reuben, 1997. ''What is Mathematics, Really?'' Oxford University Press. * Sfard, A., 2000, "Symbolizing mathematical reality into being, Or how mathematical discourse and mathematical objects create each other," in Cobb, P., ''et al.'', ''Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools and instructional design''. Lawrence Erlbaum. *

Abstract Objects

—by Gideon Rosen. *Wells, Charles,

AMOF: The Amazing Mathematical Object Factory

Mathematical Object Exhibit

mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities and their changes (cal ...

.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning
Deductive reasoning, also deductive logic, is the process of reasoning
Reason is the capacity of consciously applying logic
Logic is an interdisciplinary field which studies truth and reasoning
Reason is the capacity of consciously making ...

and mathematical proof
A mathematical proof is an inferential argument
In logic
Logic is an interdisciplinary field which studies truth and reasoning
Reason is the capacity of consciously making sense of things, applying logic
Logic (from Ancient Greek ...

s. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include number
A number is a mathematical object
A mathematical object is an abstract concept arising in mathematics.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deduct ...

s, sets, functions
Function or functionality may refer to:
Computing
* Function key
A function key is a key on a computer
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations automatically. Modern comp ...

, expressions
Expression may refer to:
Linguistics
* Expression (linguistics), a word, phrase, or sentence
* Fixed expression, a form of words with a specific meaning
* Idiom, a type of fixed expression
* Metaphor#Common types, Metaphorical expression, a parti ...

, geometric shape
A shape is the form of an object or its external boundary, outline, or external Surface (mathematics), surface, as opposed to other properties such as color, texture, or material type.
Classification of simple shapes
Some simple shapes can ...

s, transformations
Transformation may refer to:
Science and mathematics
In biology and medicine
* Metamorphosis, the biological process of changing physical form after birth or hatching
* Malignant transformation, the process of cells becoming cancerous
* Transf ...

of other mathematical objects, and spaces. Mathematical objects can be very complex; for example, theorem
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers ( and ), formulas and related structures (), shapes and spaces in which they are contained (), and quantities and their changes ( and ). There is no ge ...

s, proofs, and even theories
A theory is a reason, rational type of abstraction, abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or researc ...

are considered as mathematical objects in proof theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory
In mathematical logic
Mathematical logic is the study of formal logic within mathematics. Ma ...

.
List of mathematical objects by branch

*Number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of devoted primarily to the study of the s and . German mathematician (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen ...

** number
A number is a mathematical object
A mathematical object is an abstract concept arising in mathematics.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deduct ...

s, operations
Operation or Operations may refer to:
Science and technology
* Surgical operation
Surgery ''cheirourgikē'' (composed of χείρ, "hand", and ἔργον, "work"), via la, chirurgiae, meaning "hand work". is a medical or dental specialty that ...

,
* Combinatorics
Combinatorics is an area of mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geom ...

**permutation
In , a permutation of a is, loosely speaking, an arrangement of its members into a or , or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order o ...

s, derangement
In combinatorial
Combinatorics is an area of mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, ...

s, combination
In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of t ...

s
* Set theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, i ...

** sets, set partition
File:Genji chapter symbols groupings of 5 elements.svg, The traditional Japanese symbols for the 54 chapters of the ''Tale of Genji'' are based on the 52 ways of partitioning five elements (the two red symbols represent the same partition, and th ...

s
**functions
Function or functionality may refer to:
Computing
* Function key
A function key is a key on a computer
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations automatically. Modern comp ...

, and relations
Relation or relations may refer to:
General uses
*International relations, the study of interconnection of politics, economics, and law on a global level
*Interpersonal relationship, association or acquaintance between two or more people
*Public ...

* Geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position of figures. A mat ...

**points
Point or points may refer to:
Places
* Point, Lewis, a peninsula in the Outer Hebrides, Scotland
* Point, Texas, a city in Rains County, Texas, United States
* Point, the NE tip and a ferry terminal of Lismore, Scotland, Lismore, Inner Hebrides, ...

, lines
Long interspersed nuclear elements (LINEs) (also known as long interspersed nucleotide elements or long interspersed elements) are a group of non-LTR (long terminal repeat
A long terminal repeat (LTR) is a pair of identical sequences of DNA
...

, line segment
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position ...

s,
**polygon
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position o ...

s (triangle
A triangle is a polygon
In geometry, a polygon () is a plane (mathematics), plane Shape, figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The ...

s, square
In Euclidean geometry
Euclidean geometry is a mathematical system attributed to Alexandrian Greek mathematics , Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's method ...

s, pentagon
In geometry, a pentagon (from the Greek language, Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is ...

s, hexagon
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position of ...

s, ...), circle
A circle is a shape
A shape or figure is the form of an object or its external boundary, outline, or external surface
File:Water droplet lying on a damask.jpg, Water droplet lying on a damask. Surface tension is high enough to preven ...

s, ellipse
In , an ellipse is a surrounding two , such that for all points on the curve, the sum of the two distances to the focal points is a constant. As such, it generalizes a , which is the special type of ellipse in which the two focal points are t ...

s, parabola
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers ( and ), formulas and related structures (), shapes and spaces in which they are contained (), and quantities and their changes ( and ). There is no ...

s, hyperbola
In mathematics, a hyperbola () (adjective form hyperbolic, ) (plural ''hyperbolas'', or ''hyperbolae'' ()) is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it ...

s,
**polyhedra
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position o ...

(tetrahedron
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position ...

s, cube
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position ...

s, octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces, twelve edges, and six vertices. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral tri ...

s, dodecahedron
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position o ...

s, icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non-similarity (geometry), similar shapes of icosahedra, some of them ...

s, ), sphere
A sphere (from Greek#REDIRECT Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece
Greece ( el, Ελλάδα, , ), officially the Hellenic Republic, is a country located in Southeast Europe. Its population is appr ...

s, ellipsoid
An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional Scaling (geometry), scalings, or more generally, of an affine transformation.
An ellipsoid is a quadric surface; that is, a Surface (mathemat ...

s, paraboloid
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position of ...

s, hyperboloid
In geometry
Geometry (from the grc, γεωμετρία; ''wikt:γῆ, geo-'' "earth", ''wikt:μέτρον, -metron'' "measurement") is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space th ...

s, cylinder
A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear
In geometry
Geometry (from the grc, γεωμετρία; ''wikt:γῆ, geo-'' "earth", ''wikt:μέτρον, -metron'' "measur ...

s, cone
A cone is a three-dimensional
Three-dimensional space (also: 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called parameter
A parameter (from the Ancient Greek language, Ancient Greek wikt:πα ...

s.
* Graph theory
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers ( and ), formulas and related structures (), shapes and spaces in which they are contained (), and quantities and their changes ( and ). There is no gen ...

**graph
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
*Graph (topology), a topological space resembling a graph in the sense of discret ...

s, tree
In botany, a tree is a perennial plant with an elongated Plant stem, stem, or trunk (botany), trunk, supporting branches and leaves in most species. In some usages, the definition of a tree may be narrower, including only wood plants with se ...

s, node
In general, a node is a localized swelling (a "knot
A knot is an intentional complication in Rope, cordage which may be practical or decorative, or both. Practical knots are classified by function, including hitches, bends, loop knots, and splic ...

s, edge
Edge or EDGE may refer to:
Technology Computing
* Edge computing
Edge computing is a distributed computing paradigm that brings computation and data storage closer to the sources of data. This is expected to improve response times and save bandw ...

s
* Topology
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities ...

**manifold
The real projective plane is a two-dimensional manifold that cannot be realized in three dimensions without self-intersection, shown here as Boy's surface.
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of su ...

s.
* Linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as:
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as:
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mat ...

**scalar
Scalar may refer to:
*Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers
*Scalar (physics), a physical quantity that can be described by a single element of a number field such as ...

s, vector
Vector may refer to:
Biology
*Vector (epidemiology)
In epidemiology
Epidemiology is the study and analysis of the distribution (who, when, and where), patterns and risk factor, determinants of health and disease conditions in defined pop ...

s, matrices, tensor
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities a ...

s.
* Abstract algebra
In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathema ...

**group
A group is a number
A number is a mathematical object used to counting, count, measurement, measure, and nominal number, label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with ...

s,
** rings, module
Module, modular and modularity may refer to the concept of modularity. They may also refer to:
Computing and engineering
* Modular design, the engineering discipline of designing complex devices using separately designed sub-components
* Modula ...

s,
**field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grassl ...

s, vector space
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities a ...

s,
** group-theoretic lattices, and order-theoretic lattices.
See also

*Abstract object
In metaphysics
Metaphysics is the branch of philosophy that studies the first principles of being, identity and change, space and time, causality, necessity and possibility. It includes questions about the nature of consciousness and the rela ...

* Mathematical structure
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). It ...

Categories
Category, plural categories, may refer to:
Philosophy and general uses
*Categorization
Categorization is the human ability and activity of recognizing shared features or similarities between the elements of the experience of the world (such ...

are simultaneously homes to mathematical objects and mathematical objects in their own right. In proof theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory
In mathematical logic
Mathematical logic is the study of formal logic within mathematics. Ma ...

, proofs and theorem
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers ( and ), formulas and related structures (), shapes and spaces in which they are contained (), and quantities and their changes ( and ). There is no ge ...

s are also mathematical objects.
The of mathematical objects has been the subject of much investigation and debate by philosophers of mathematics. Burgess, John, and Rosen, Gideon, 1997. ''A Subject with No Object: Strategies for Nominalistic Reconstrual of Mathematics''. Oxford University Press
Oxford University Press (OUP) is the university press
A university press is an academic publishing
Publishing is the activity of making information, literature, music, software and other content available to the public for sale or for fre ...

. {{isbn, 0198236158
References

* Azzouni, J., 1994. ''Metaphysical Myths, Mathematical Practice''. Cambridge University Press. * Burgess, John, and Rosen, Gideon, 1997. ''A Subject with No Object''. Oxford Univ. Press. * Davis, Philip andReuben Hersh
Reuben Hersh (December 9, 1927 – January 3, 2020) was an American mathematician
A mathematician is someone who uses an extensive knowledge of mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as qu ...

, 1999 ''The Mathematical Experience''. Mariner Books: 156–62.
* Gold, Bonnie, and Simons, Roger A., 2011. Proof and Other Dilemmas: Mathematics and Philosophy

'. Mathematical Association of America. * Hersh, Reuben, 1997. ''What is Mathematics, Really?'' Oxford University Press. * Sfard, A., 2000, "Symbolizing mathematical reality into being, Or how mathematical discourse and mathematical objects create each other," in Cobb, P., ''et al.'', ''Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools and instructional design''. Lawrence Erlbaum. *

Stewart Shapiro
Stewart Shapiro (; born 1951) is O'Donnell Professor of Philosophy at the Ohio State University. He is a leading figure in the philosophy of mathematics where he defends the Abstract structuralism, abstract variety of Structuralism (philosophy of m ...

, 2000. ''Thinking about mathematics: The philosophy of mathematics''. Oxford University Press.
External links

*Stanford Encyclopedia of Philosophy
The ''Stanford Encyclopedia of Philosophy'' (''SEP'') combines an online encyclopedia
An online encyclopedia, also called an Internet encyclopedia, or a digital encyclopedia, is an encyclopedia
An encyclopedia or encyclopaedia (British E ...

:Abstract Objects

—by Gideon Rosen. *Wells, Charles,

AMOF: The Amazing Mathematical Object Factory

Mathematical Object Exhibit