HOME

TheInfoList



OR:

Martensite is a very hard form of
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resist ...
crystalline structure. It is named after German
metallurgist Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the sci ...
Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by
diffusionless transformation A diffusionless transformation is a phase change that occurs without the long-range diffusion of atoms but rather by some form of cooperative, homogenous movement of many atoms that results in a change in the crystal structure. These movements ar ...
.


Properties

Martensite is formed in carbon steels by the rapid cooling (
quench In materials science, quenching is the rapid cooling of a workpiece in water, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as p ...
ing) of the
austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
form of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in fro ...
at such a high rate that carbon atoms do not have time to diffuse out of the crystal structure in large enough quantities to form
cementite Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, brit ...
(Fe3C). Austenite is gamma-phase iron (γ-Fe), a solid solution of iron and alloying elements. As a result of the quenching, the
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties ...
austenite transforms to a highly strained
body-centered tetragonal In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a squar ...
form called martensite that is
supersaturated In physical chemistry, supersaturation occurs with a solution when the concentration of a solute exceeds the concentration specified by the value of solubility at equilibrium. Most commonly the term is applied to a solution of a solid in a ...
with
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes u ...
. The shear deformations that result produce a large number of dislocations, which is a primary strengthening mechanism of steels. The highest hardness of a
pearlitic Pearlite is a two-phased, lamellar (or layered) structure composed of alternating layers of ferrite (87.5 wt%) and cementite (12.5 wt%) that occurs in some steels and cast irons. During slow cooling of an iron-carbon alloy, pearlite forms ...
steel is 400  Brinell, whereas martensite can achieve 700 Brinell. The martensitic
reaction Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction * Nuclear reaction *Reaction (physics), as defined by Newton's third law * Chain reaction (disambiguation). Biology and ...
begins during cooling when the
austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
reaches the martensite start temperature (Ms), and the parent austenite becomes mechanically unstable. As the sample is quenched, an increasingly large percentage of the austenite transforms to martensite until the lower transformation temperature Mf is reached, at which time the transformation is completed. For a
eutectoid A eutectic system or eutectic mixture ( ) is a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the ''eutectic temp ...
steel (0.76% C), between 6 and 10% of austenite, called retained austenite, will remain. The percentage of retained austenite increases from insignificant for less than 0.6% C steel, to 13% retained austenite at 0.95% C and 30–47% retained austenite for a 1.4% carbon steel. A very rapid quench is essential to create martensite. For a eutectoid carbon steel of thin section, if the quench starting at 750 °C and ending at 450 °C takes place in 0.7 seconds (a rate of 430 °C/s) no pearlite will form, and the steel will be martensitic with small amounts of retained austenite. For steel with 0–0.6% carbon, the martensite has the appearance of
lath A lath or slat is a thin, narrow strip of straight- grained wood used under roof shingles or tiles, on lath and plaster walls and ceilings to hold plaster, and in lattice and trellis work. ''Lath'' has expanded to mean any type of backing ma ...
and is called lath martensite. For steel with greater than 1% carbon, it will form a plate-like structure called plate martensite. Between those two percentages, the physical appearance of the grains is a mix of the two. The strength of the martensite is reduced as the amount of retained austenite grows. If the cooling rate is slower than the critical cooling rate, some amount of pearlite will form, starting at the grain boundaries where it will grow into the grains until the Ms temperature is reached, then the remaining austenite transforms into martensite at about half the speed of sound in steel. In certain
alloy steels Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties. Alloy steels are broken down into two groups: low alloy steels and high alloy steels. The differen ...
, martensite can be formed by working the steel at Ms temperature by quenching to below Ms and then working by plastic deformations to reductions of cross section area between 20% to 40% of the original. The process produces dislocation densities up to 1013/cm2. The great number of dislocations, combined with precipitates that originate and pin the dislocations in place, produces a very hard steel. This property is frequently used in toughened ceramics like
yttria-stabilized zirconia Yttria-stabilized zirconia (YSZ) is a ceramic in which the cubic crystal structure of zirconium dioxide is made stable at room temperature by an addition of yttrium oxide. These oxides are commonly called "zirconia" ( Zr O2) and "yttria" ( Y2 O ...
and in special steels like
TRIP steel TRIP steel are a class of high-strength steel alloys typically used in naval and marine applications and in the automotive industry. TRIP stands for "Transformation induced plasticity," which implies a phase transformation in the material, typicall ...
s. Thus, martensite can be thermally induced or stress induced. The growth of martensite phase requires very little thermal
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
because the process is a diffusionless transformation, which results in the subtle but rapid rearrangement of atomic positions, and has been known to occur even at
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
temperatures. Martensite has a lower density than austenite, so that the martensitic transformation results in a relative change of volume. Of considerably greater importance than the volume change is the
shear strain In physics, deformation is the continuum mechanics transformation of a body from a ''reference'' configuration to a ''current'' configuration. A configuration is a set containing the positions of all particles of the body. A deformation can ...
, which has a magnitude of about 0.26 and which determines the shape of the plates of martensite. Martensite is not shown in the equilibrium
phase diagram A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, volume, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseou ...
of the iron-carbon system because it is not an equilibrium phase. Equilibrium phases form by slow cooling rates that allow sufficient time for diffusion, whereas martensite is usually formed by very high cooling rates. Since chemical processes (the attainment of equilibrium) accelerate at higher temperature, martensite is easily destroyed by the application of heat. This process is called tempering. In some alloys, the effect is reduced by adding elements such as
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isola ...
that interfere with cementite nucleation, but more often than not, the nucleation is allowed to proceed to relieve stresses. Since quenching can be difficult to control, many steels are quenched to produce an overabundance of martensite, then tempered to gradually reduce its concentration until the preferred structure for the intended application is achieved. The needle-like microstructure of martensite leads to brittle behavior of the material. Too much martensite leaves steel
brittle A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. ...
; too little leaves it soft.


See also

* Eutectic *
Eutectoid A eutectic system or eutectic mixture ( ) is a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the ''eutectic temp ...
*
Ferrite (iron) At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe), gamma iron (γ-Fe), and delta iron (δ-Fe). At very high pressure, a fourth form exists, called epsilon iron (ε-Fe). Some controver ...
*
Maraging steel Maraging steels (a portmanteau of "martensitic" and "aging") are steels that are known for possessing superior strength and toughness without losing ductility. ''Aging'' refers to the extended heat-treatment process. These steels are a special clas ...
*
Spring steel Spring steel is a name given to a wide range of steels used in the manufacture of different products, including swords, saw blades, springs and many more. These steels are generally low-alloy manganese, medium-carbon steel or high-carbon stee ...
*
Tool steel Tool steel is any of various carbon steels and alloy steels that are particularly well-suited to be made into tools and tooling, including cutting tools, dies, hand tools, knives, and others. Their suitability comes from their distinctive ha ...


References


External links


Comprehensive resources on martensite from the University of CambridgeYouTube Lecture by Prof. HDKH Bhadeshia , from the University of Cambridge

Metallurgy for the Non-Metallurgist from the American Society for MetalsPTCLab---Capable of calculating martensite crystallography with single shear or double shear theory
{{Authority control Metallurgy Metals Steel Ceramic materials