HOME

TheInfoList



OR:

A magnetohydrodynamic generator (MHD generator) is a
magnetohydrodynamic converter __NOTOC__ A magnetohydrodynamic converter (MHD converter) is an electromagnetic machine with no moving parts involving magnetohydrodynamics, the study of the kinetics of electrically conductive fluids (liquid or ionized gas) in the presence of e ...
that transforms
thermal energy The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, de ...
and
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
directly into
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
. An MHD generator, like a conventional generator, relies on moving a conductor through a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
to generate electric current. The MHD generator uses hot conductive ionized gas (a plasma) as the moving conductor. The mechanical dynamo, in contrast, uses the motion of mechanical devices to accomplish this. MHD generators are different from traditional
electric generator In electricity generation, a generator is a device that converts motive power ( mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, g ...
s in that they operate without
moving parts Machines include both fixed and moving parts. The moving parts have controlled and constrained motions. Moving parts are machine components excluding any moving fluids, such as fuel, coolant or hydraulic fluid. Moving parts also do not include ...
(e.g. no turbine) to limit the upper temperature. They therefore have the highest known theoretical thermodynamic efficiency of any electrical generation method. MHD has been extensively developed as a topping cycle to increase the efficiency of
electric generation Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery (transmission, distribution, etc.) to end users or its storag ...
, especially when burning
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when ...
or
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
. The hot exhaust gas from an MHD generator can heat the boilers of a
steam power plant A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a ste ...
, increasing overall efficiency. Practical MHD generators have been developed for fossil fuels, but these were overtaken by less expensive
combined cycle A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas tur ...
s in which the exhaust of a
gas turbine A gas turbine, also called a combustion turbine, is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas generator or core) and are, in the directio ...
or
molten carbonate fuel cell Molten-carbonate fuel cells (MCFCs) are high-temperature fuel cells that operate at temperatures of 600 °C and above. Molten carbonate fuel cells (MCFCs) were developed for natural gas, biogas (produced as a result of anaerobic digestion or ...
heats
steam Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporizatio ...
to power a
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam tu ...
. MHD dynamos are the complement of MHD accelerators, which have been applied to pump
liquid metal A liquid metal is a metal or a metal alloy which is liquid at or near room temperature. The only stable liquid elemental metal at room temperature is mercury (Hg), which is molten above −38.8 °C (234.3 K, −37.9 °F). Three more ...
s,
seawater Seawater, or salt water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has appro ...
and plasmas. Natural MHD dynamos are an active area of research in
plasma physics Plasma ()πλάσμα
, Henry George Liddell, R ...
and are of great interest to the
geophysics Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
and
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
communities, since the magnetic fields of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
and
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
are produced by these natural dynamos.


Principle

The
Lorentz Force Law Lorentz is a name derived from the Roman surname, Laurentius, which means "from Laurentum". It is the German form of Laurence. Notable people with the name include: Given name * Lorentz Aspen (born 1978), Norwegian heavy metal pianist and keyboa ...
describes the effects of a charged particle moving in a constant magnetic field. The simplest form of this law is given by the vector equation. : \mathbf = Q (\mathbf\times\mathbf) where * F is the force acting on the particle. * Q is the charge of the particle, * v is the velocity of the particle, and * B is the magnetic field. The vector F is perpendicular to both v and B according to the
right hand rule In mathematics and physics, the right-hand rule is a common mnemonic for understanding orientation of axes in three-dimensional space. It is also a convenient method for quickly finding the direction of a cross-product of 2 vectors. Most of ...
.


Power generation

Typically, for a large power station to approach the operational efficiency of
computer model Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be deter ...
s, steps must be taken to increase the electrical conductivity of the conductive substance. The heating of a gas to its plasma state or the addition of other easily ionizable substances like the salts of alkali metals can accomplish this increase. In practice, a number of issues must be considered in the implementation of an MHD generator: generator efficiency, economics, and toxic byproducts. These issues are affected by the choice of one of the three MHD generator designs: the Faraday generator, the Hall generator, and the disc generator.


Faraday generator

The Faraday generator is named for Michael Faraday's experiments on moving charged particles in the Thames river. A simple Faraday generator would consist of a wedge-shaped pipe or tube of some non-
conductive In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is gene ...
material. When an electrically conductive fluid flows through the tube, in the presence of a significant perpendicular magnetic field, a voltage is induced in the fluid, which can be drawn off as electrical power by placing the electrodes on the sides at 90 degree angles to the magnetic field. There are limitations on the density and type of field used. The amount of power that can be extracted is proportional to the cross sectional area of the tube and the speed of the conductive flow. The conductive substance is also cooled and slowed by this process. MHD generators typically reduce the temperature of the conductive substance from plasma temperatures to just over 1000 °C. The main practical problem of a Faraday generator is that differential voltages and currents in the fluid short through the electrodes on the sides of the duct. The most powerful waste is from the
Hall effect The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was dis ...
current. This makes the Faraday duct very inefficient. Most further refinements of MHD generators have tried to solve this problem. The optimal magnetic field on duct-shaped MHD generators is a sort of saddle shape. To get this field, a large generator requires an extremely powerful magnet. Many research groups have tried to adapt superconducting magnets to this purpose, with varying success. (For references, please see the discussion of generator efficiency, below.)


Hall generator

The typical solution, historically, has been to use the
Hall effect The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was dis ...
to create a current that flows with the fluid. (See illustration.) This design has arrays of short, segmented electrodes on the sides of the duct. The first and last electrodes in the duct power the load. Each other electrode is shorted to an electrode on the opposite side of the duct. These shorts of the Faraday current induce a powerful magnetic field within the fluid, but in a chord of a circle at right angles to the Faraday current. This secondary, induced field makes current flow in a rainbow shape between the first and last electrodes. Losses are less than a Faraday generator, and voltages are higher because there is less shorting of the final induced current. However, this design has problems because the speed of the material flow requires the middle electrodes to be offset to "catch" the Faraday currents. As the load varies, the fluid flow speed varies, misaligning the Faraday current with its intended electrodes, and making the generator's efficiency very sensitive to its load.


Disc generator

The third and, currently, the most efficient design is the Hall effect disc generator. This design currently holds the efficiency and energy density records for MHD generation. A disc generator has fluid flowing between the center of a disc, and a duct wrapped around the edge. (The ducts are not shown.) The magnetic excitation field is made by a pair of circular Helmholtz coils above and below the disk. (The coils are not shown.) The Faraday currents flow in a perfect dead short around the periphery of the disk. The Hall effect currents flow between ring electrodes near the center duct and ring electrodes near the periphery duct. The wide flat gas flow reduced the distance, hence the resistance of the moving fluid. This increases efficiency. Another significant advantage of this design is that the magnets are more efficient. First, they cause simple parallel field lines. Second, because the fluid is processed in a disk, the magnet can be closer to the fluid, and in this magnetic geometry, magnetic field strengths increase as the 7th power of distance. Finally, the generator is compact for its power, so the magnet is also smaller. The resulting magnet uses a much smaller percentage of the generated power.


Generator efficiency

The efficiency of the direct energy conversion in MHD power generation increases with the magnetic field strength and the plasma conductivity, which depends directly on the plasma temperature, and more precisely on the electron temperature. As very hot plasmas can only be used in pulsed MHD generators (for example using
shock tube : ''For the pyrotechnic initiator, see Shock tube detonator'' The shock tube is an instrument used to replicate and direct blast waves at a sensor or a model in order to simulate actual explosions and their effects, usually on a smaller scale. ...
s) due to the fast thermal material erosion, it was envisaged to use nonthermal plasmas as working fluids in steady MHD generators, where only free electrons are heated a lot (10,000–20,000
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
s) while the main gas (neutral atoms and ions) remains at a much lower temperature, typically 2500 kelvins. The goal was to preserve the materials of the generator (walls and electrodes) while improving the limited conductivity of such poor conductors to the same level as a plasma in
thermodynamic equilibrium Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In the ...
; i.e. completely heated to more than 10,000 kelvins, a temperature that no material could stand. But
Evgeny Velikhov Evgeny Pavlovich Velikhov (born on February 2, 1935; in Russian: ''Евгений Павлович Велихов'') is a physicist and scientific leader in the Russian Federation. His scientific interests include plasma physics, lasers, control ...
first discovered theoretically in 1962 and experimentally in 1963 that an ionization instability, later called the Velikhov instability or
electrothermal instability __NOTOC__ The electrothermal instability (also known as ionization instability, non-equilibrium instability or Velikhov instability in the literature) is a magnetohydrodynamic (MHD) instability appearing in magnetized non-thermal plasmas used ...
, quickly arises in any MHD converter using magnetized nonthermal plasmas with hot electrons, when a critical Hall parameter is reached, hence depending on the
degree of ionization The degree of ionization (also known as ''ionization yield'' in the literature) refers to the proportion of neutral particles, such as those in a gas or aqueous solution, that are ionized. For electrolytes, it could be understood as a capacity ...
and the magnetic field. Such an instability greatly degrades the performance of nonequilibrium MHD generators. The prospects about this technology, which initially predicted awesome efficiencies, crippled MHD programs all over the world as no solution to mitigate the instability was found at that time. Consequently, without implementing solutions to master the electrothermal instability, practical MHD generators had to limit the Hall parameter or use moderately heated thermal plasmas instead of cold plasmas with hot electrons, which severely lowers efficiency. As of 1994, the 22% efficiency record for closed-cycle disc MHD generators was held by Tokyo Technical Institute. The peak enthalpy extraction in these experiments reached 30.2%. Typical open-cycle Hall & duct coal MHD generators are lower, near 17%. These efficiencies make MHD unattractive, by itself, for utility power generation, since conventional
Rankine cycle The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sourc ...
power plants easily reach 40%. However, the exhaust of an MHD generator burning
fossil fuel A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels ma ...
is almost as hot as a flame. By routing its exhaust gases into a heat exchanger for a turbine
Brayton cycle The Brayton cycle is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. The original Brayton engines used a piston compressor and piston expander, but modern gas tu ...
or steam generator
Rankine cycle The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sourc ...
, MHD can convert
fossil fuel A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels ma ...
s into electricity with an estimated efficiency up to 60 percent, compared to the 40 percent of a typical coal plant. A magnetohydrodynamic generator might also be the first stage of a gas core reactor.


Material and design issues

MHD generators have difficult problems in regard to materials, both for the walls and the electrodes. Materials must not melt or corrode at very high temperatures. Exotic ceramics were developed for this purpose, and must be selected to be compatible with the fuel and ionization seed. The exotic materials and the difficult fabrication methods contribute to the high cost of MHD generators. Also, MHDs work better with stronger magnetic fields. The most successful magnets have been superconducting, and very close to the channel. A major difficulty was refrigerating these magnets while insulating them from the channel. The problem is worse because the magnets work better when they are closer to the channel. There are also severe risks of damage to the hot, brittle ceramics from differential thermal cracking. The magnets are usually near absolute zero, while the channel is several thousand degrees. For MHDs, both alumina (Al2O3) and magnesium peroxide (MgO2) were reported to work for the insulating walls. Magnesium peroxide degrades near moisture. Alumina is water-resistant and can be fabricated to be quite strong, so in practice most MHDs have used alumina for the insulating walls. For the electrodes of clean MHDs (i.e. burning natural gas), one good material was a mix of 80% CeO2, 18% ZrO2, and 2% Ta2O5. Coal-burning MHDs have intensely corrosive environments with slag. The slag both protects and corrodes MHD materials. In particular, migration of oxygen through the slag accelerates corrosion of metallic anodes. Nonetheless, very good results have been reported with
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's r ...
electrodes at 900K. Another, perhaps superior option is a spinel ceramic, FeAl2O4 - Fe3O4. The spinel was reported to have electronic conductivity, absence of a resistive reaction layer but with some diffusion of iron into the alumina. The diffusion of iron could be controlled with a thin layer of very dense alumina, and water cooling in both the electrodes and alumina insulators. Attaching the high temperature electrodes to conventional copper bus bars is also challenging. The usual methods establish a chemical passivation layer, and cool the busbar with water.


Economics

MHD generators have not been employed for large scale mass energy conversion because other techniques with comparable efficiency have a lower lifecycle investment cost. Advances in natural gas turbines achieved similar thermal efficiencies at lower costs, by having the turbine's exhaust drive a
Rankine cycle The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sourc ...
steam plant. To get more electricity from coal, it is cheaper to simply add more low-temperature steam-generating capacity. A coal-fueled MHD generator is a type of Brayton power cycle, similar to the power cycle of a combustion turbine. However, unlike the combustion turbine, there are no moving mechanical parts; the electrically conducting plasma provides the moving electrical conductor. The side walls and electrodes merely withstand the pressure within, while the anode and cathode conductors collect the electricity that is generated. All Brayton cycles are heat engines. Ideal Brayton cycles also have an ideal efficiency equal to ideal
Carnot cycle A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodyna ...
efficiency. Thus, the potential for high energy efficiency from an MHD generator. All Brayton cycles have higher potential for efficiency the higher the firing temperature. While a combustion turbine is limited in maximum temperature by the strength of its air/water or steam-cooled rotating airfoils; there are no rotating parts in an open-cycle MHD generator. This upper bound in temperature limits the energy efficiency in combustion turbines. The upper bound on Brayton cycle temperature for an MHD generator is not limited, so inherently an MHD generator has a higher potential capability for energy efficiency. The temperatures at which linear coal-fueled MHD generators can operate are limited by factors that include: (a) the combustion fuel, oxidizer, and oxidizer preheat temperature which limit the maximum temperature of the cycle; (b) the ability to protect the sidewalls and electrodes from melting; (c) the ability to protect the electrodes from electrochemical attack from the hot slag coating the walls combined with the high current or arcs that impinge on the electrodes as they carry off the direct current from the plasma; and (d) by the capability of the electrical insulators between each electrode. Coal-fired MHD plants with oxygen/air and high oxidant preheats would probably provide potassium seeded plasmas of about 4200°F, 10 atmospheres pressure, and begin expansion at Mach1.2. These plants would recover MHD exhaust heat for oxidant preheat, and for combined cycle steam generation. With aggressive assumptions, one DOE-funded feasibility study of where the technology could go, 1000 MWe Advanced Coal-Fired MHD/Steam Binary Cycle Power Plant Conceptual Design, published in June 1989, showed that a large coal-fired MHD combined cycle plant could attain a HHV energy efficiency approaching 60 percent—well in excess of other coal-fueled technologies, so the potential for low operating costs exists. However, no testing at those aggressive conditions or size has yet occurred, and there are no large MHD generators now under test. There is simply an inadequate reliability track record to provide confidence in a commercial coal-fuelled MHD design. U25B MHD testing in Russia using natural gas as fuel used a superconducting magnet, and had an output of 1.4 megawatts. A coal-fired MHD generator series of tests funded by the U.S. Department of Energy (DOE) in 1992 produced MHD power from a larger superconducting magnet at the Component Development and Integration Facility (CDIF) in
Butte __NOTOC__ In geomorphology, a butte () is an isolated hill with steep, often vertical sides and a small, relatively flat top; buttes are smaller landforms than mesas, plateaus, and tablelands. The word ''butte'' comes from a French word me ...
,
Montana Montana () is a state in the Mountain West division of the Western United States. It is bordered by Idaho to the west, North Dakota and South Dakota to the east, Wyoming to the south, and the Canadian provinces of Alberta, British Columb ...
. None of these tests were conducted for long-enough durations to verify the commercial durability of the technology. Neither of the test facilities were in large-enough scale for a commercial unit. Superconducting magnets are used in the larger MHD generators to eliminate one of the large parasitic losses: the power needed to energize the electromagnet. Superconducting magnets, once charged, consume no power, and can develop intense magnetic fields 4 teslas and higher. The only
parasitic load Parasitic load is a term used with regard to electrical appliances, railway locomotives and internal combustion engines. With regard to electrical appliances, it represents the power consumed even when the appliance is shut off, that is standby p ...
for the magnets are to maintain refrigeration, and to make up the small losses for the non-supercritical connections. Because of the high temperatures, the non-conducting walls of the channel must be constructed from an exceedingly heat-resistant substance such as
yttrium Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a " rare-earth element". Yttrium is almost always found in co ...
oxide or
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
dioxide to retard oxidation. Similarly, the electrodes must be both conductive and heat-resistant at high temperatures. The AVCO coal-fueled MHD generator at the CDIF was tested with water-cooled copper electrodes capped with platinum, tungsten, stainless steel, and electrically-conducting ceramics.


Toxic byproducts

MHD reduces overall production of hazardous fossil fuel wastes because it increases plant efficiency. In MHD coal plants, the patented commercial "Econoseed" process developed by the U.S. (see below) recycles potassium ionization seed from the fly ash captured by the stack-gas scrubber. However, this equipment is an additional expense. If molten metal is the armature fluid of an MHD generator, care must be taken with the coolant of the electromagnetics and channel. The alkali metals commonly used as MHD fluids react violently with water. Also, the chemical byproducts of heated, electrified alkali metals and channel ceramics may be poisonous and environmentally persistent.


History

The first practical MHD power research was funded in 1938 in the U.S. by Westinghouse in its
Pittsburgh, Pennsylvania Pittsburgh ( ) is a city in the Commonwealth (U.S. state), Commonwealth of Pennsylvania, United States, and the county seat of Allegheny County, Pennsylvania, Allegheny County. It is the most populous city in both Allegheny County and Wester ...
laboratories, headed by Hungarian Bela Karlovitz. The initial patent on MHD is by B. Karlovitz, U.S. Patent No. 2,210,918, "Process for the Conversion of Energy", August 13, 1940. World War II interrupted development. In 1962, the First International Conference on MHD Power was held in Newcastle upon Tyne, UK by Dr. Brian C. Lindley of the International Research and Development Company Ltd. The group set up a steering committee to set up further conferences and disseminate ideas. In 1964, the group set up a second conference in Paris, France, in consultation with the European Nuclear Energy Agency. Since membership in the ENEA was limited, the group persuaded the
International Atomic Energy Agency The International Atomic Energy Agency (IAEA) is an intergovernmental organization that seeks to promote the peaceful use of nuclear energy and to inhibit its use for any military purpose, including nuclear weapons. It was established in 195 ...
to sponsor a third conference, in Salzburg, Austria, July 1966. Negotiations at this meeting converted the steering committee into a periodic reporting group, the ILG-MHD (international liaison group, MHD), under the ENEA, and later in 1967, also under the International Atomic Energy Agency. Further research in the 1960s by R. Rosa established the practicality of MHD for fossil-fueled systems. In the 1960s, AVCO Everett Aeronautical Research began a series of experiments, ending with the Mk. V generator of 1965. This generated 35MW, but used about 8 MW to drive its magnet. In 1966, the ILG-MHD had its first formal meeting in Paris, France. It began issuing a periodic status report in 1967. This pattern persisted, in this institutional form, up until 1976. Toward the end of the 1960s, interest in MHD declined because nuclear power was becoming more widely available. In the late 1970s, as interest in nuclear power declined, interest in MHD increased. In 1975,
UNESCO The United Nations Educational, Scientific and Cultural Organization is a List of specialized agencies of the United Nations, specialized agency of the United Nations (UN) aimed at promoting world peace and security through international coope ...
became persuaded the MHD might be the most efficient way to utilise world coal reserves, and in 1976, sponsored the ILG-MHD. In 1976, it became clear that no nuclear reactor in the next 25 years would use MHD, so the
International Atomic Energy Agency The International Atomic Energy Agency (IAEA) is an intergovernmental organization that seeks to promote the peaceful use of nuclear energy and to inhibit its use for any military purpose, including nuclear weapons. It was established in 195 ...
and ENEA (both nuclear agencies) withdrew support from the ILG-MHD, leaving
UNESCO The United Nations Educational, Scientific and Cultural Organization is a List of specialized agencies of the United Nations, specialized agency of the United Nations (UN) aimed at promoting world peace and security through international coope ...
as the primary sponsor of the ILG-MHD.


Former Yugoslavia development

Over more than a ten-year span, engineers in former Yugoslavian Institute of Thermal and Nuclear Technology (ITEN), Energoinvest Co., Sarajevo, had built the first experimental Magneto-Hydrodynamic facility power generator in 1989. It was here it was first patented.


U.S. development

In the 1980s, the U.S. Department of Energy began a vigorous multiyear program, culminating in a 1992 50 MW demonstration coal combustor at the Component Development and Integration Facility (CDIF) in
Butte, Montana Butte ( ) is a consolidated city-county and the county seat of Silver Bow County, Montana, United States. In 1977, the city and county governments consolidated to form the sole entity of Butte-Silver Bow. The city covers , and, according to t ...
. This program also had significant work at the Coal-Fired-In-Flow-Facility (CFIFF) at
University of Tennessee Space Institute A university () is an institution of higher (or tertiary) education and research which awards academic degrees in several academic disciplines. Universities typically offer both undergraduate and postgraduate programs. In the United States, th ...
. This program combined four parts: # An integrated MHD topping cycle, with channel, electrodes and current control units developed by AVCO, later known as Textron Defence of Boston. This system was a Hall effect duct generator heated by pulverized coal, with a potassium ionisation seed. AVCO had developed the famous Mk. V generator, and had significant experience. # An integrated bottoming cycle, developed at the CDIF. # A facility to regenerate the ionization seed was developed by TRW. Potassium carbonate is separated from the sulphate in the
fly ash Fly ash, flue ash, coal ash, or pulverised fuel ash (in the UK) plurale tantum: coal combustion residuals (CCRs)is a coal combustion product that is composed of the particulates (fine particles of burned fuel) that are driven out of coal-fired ...
from the scrubbers. The carbonate is removed, to regain the potassium. # A method to integrate MHD into preexisting coal plants. The Department of Energy commissioned two studies. Westinghouse Electric performed a study based on the Scholtz Plant of Gulf Power in
Sneads, Florida Sneads is a town in Jackson County, Florida, United States. The population was 1,849 at the 2010 census. Sneads is governed by a five-member town council and a city manager. It also has an all-volunteer fire rescue department, and its own police ...
. The MHD Development Corporation also produced a study based on the J.E. Corrette Plant of the Montana Power Company of
Billings, Montana Billings is the largest city in the U.S. state of Montana, with a population of 117,116 as of the 2020 census. Located in the south-central portion of the state, it is the seat of Yellowstone County and the principal city of the Billings Met ...
. Initial prototypes at the CDIF were operated for short durations, with various coals: Montana Rosebud, and a high-sulphur corrosive coal, Illinois No. 6. A great deal of engineering, chemistry and material science was completed. After final components were developed, operational testing completed with 4,000 hours of continuous operation, 2,000 on Montana Rosebud, 2,000 on Illinois No. 6. The testing ended in 1993.


Japanese development

The Japanese program in the late 1980s concentrated on closed-cycle MHD. The belief was that it would have higher efficiencies, and smaller equipment, especially in the clean, small, economical plant capacities near 100 megawatts (electrical) which are suited to Japanese conditions. Open-cycle coal-powered plants are generally thought to become economical above 200 megawatts. The first major series of experiments was FUJI-1, a blow-down system powered from a shock tube at the
Tokyo Institute of Technology is a national research university located in Greater Tokyo Area, Japan. Tokyo Tech is the largest institution for higher education in Japan dedicated to science and technology, one of first five Designated National University and selected as ...
. These experiments extracted up to 30.2% of enthalpy, and achieved power densities near 100 megawatts per cubic meter. This facility was funded by Tokyo Electric Power, other Japanese utilities, and the Department of Education. Some authorities believe this system was a disc generator with a helium and argon carrier gas and potassium ionization seed. In 1994, there were detailed plans for FUJI-2, a 5  MWe continuous closed-cycle facility, powered by natural gas, to be built using the experience of FUJI-1. The basic MHD design was to be a system with inert gases using a disk generator. The aim was an enthalpy extraction of 30% and an MHD thermal efficiency of 60%. FUJI-2 was to be followed by a retrofit to a 300MWe natural gas plant.


Australian development

In 1986, Professor Hugo Karl Messerle at The University of Sydney researched coal-fueled MHD. This resulted in a 28MWe topping facility that was operated outside Sydney. Messerle also wrote one of the most recent reference works (see below), as part of a UNESCO education program. A detailed obituary for Hugo is located on the Australian Academy of Technological Sciences and Engineering (ATSE) website..


Italian development

The Italian program began in 1989 with a budget of about 20 million $US, and had three main development areas: # MHD Modelling. # Superconducting magnet development. The goal in 1994 was a prototype 2m long, storing 66 MJ, for an MHD demonstration 8m long. The field was to be 5 teslas, with a taper of 0.15T/m. The geometry was to resemble a saddle shape, with cylindrical and rectangular windings of niobium-titanium copper. # Retrofits to natural gas powerplants. One was to be at the Enichem-Anic factor in Ravenna. In this plant, the combustion gases from the MHD would pass to the boiler. The other was a 230MW (thermal) installation for a power station in Brindisi, that would pass steam to the main power plant.


Chinese development

A joint U.S.-China national programme ended in 1992 by retrofitting the coal-fired No. 3 plant in Asbach. A further eleven-year program was approved in March 1994. This established centres of research in: # The Institute of Electrical Engineering in the
Chinese Academy of Sciences The Chinese Academy of Sciences (CAS); ), known by Academia Sinica in English until the 1980s, is the national academy of the People's Republic of China for natural sciences. It has historical origins in the Academia Sinica during the Republi ...
, Beijing, concerned with MHD generator design. # The Shanghai Power Research Institute, concerned with overall system and superconducting magnet research. # The Thermoenergy Research Engineering Institute at the Nanjing's
Southeast University Southeast University (SEU, ) is a public research university located in Nanjing, Jiangsu, China. It was formed from one of the oldest universities and the first coeducational university in China, and designated as a member of the Double First C ...
, concerned with later developments. The 1994 study proposed a 10W (electrical, 108MW thermal) generator with the MHD and bottoming cycle plants connected by steam piping, so either could operate independently.


Russian developments

In 1971 the natural-gas fired U-25 plant was completed near Moscow, with a designed capacity of 25 megawatts. By 1974 it delivered 6 megawatts of power.Donald G. ink, H. Wayne Beatty (ed), ''Standard Handbook for Electrical Engineers, 11th Edition'', Mc Graw Hill, 1978 page 11–52 By 1994, Russia had developed and operated the coal-operated facility U-25, at the High-Temperature Institute of the
Russian Academy of Science The Russian Academy of Sciences (RAS; russian: Росси́йская акаде́мия нау́к (РАН) ''Rossíyskaya akadémiya naúk'') consists of the national academy of Russia; a network of scientific research institutes from across t ...
in Moscow. U-25's bottoming plant was actually operated under contract with the Moscow utility, and fed power into Moscow's grid. There was substantial interest in Russia in developing a coal-powered disc generator. In 1986 the first industrial power plant with MHD generator was built, but in 1989 the project was cancelled before MHD launch and this power plant later joined to
Ryazan Power Station The Ryazan Power Station (also called Novomichurinsk Power Station) is the fifth largest power station in Russia, with an installed capacity of 3,130  MW. The power station is located in Novomichurinsk of the Ryazan Oblast, Russia. Construct ...
as a 7th unit with ordinary construction.


See also

*
Computational magnetohydrodynamics Computational magnetohydrodynamics (CMHD) is a rapidly developing branch of magnetohydrodynamics that uses numerical methods and algorithms to solve and analyze problems that involve electrically conducting fluids. Most of the methods used in CMHD a ...
*
Electrohydrodynamics Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. It is the study of the motions of ionized particles or molecules and their interactions with ...
*
Electromagnetic pump An electromagnetic pump is a pump that moves liquid metal, molten salt, brine, or other electrically conductive liquid using electromagnetism. A magnetic field is set at right angles to the direction the liquid moves in, and a current is passed ...
*
Ferrofluid Ferrofluid is a liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended in a carrier fluid (usually an organic solvent or water). Each magnetic particle ...
*
List of plasma (physics) articles This is a list of plasma physics topics. A * Ablation * Abradable coating * Abraham–Lorentz force * Absorption band * Accretion disk * Active galactic nucleus * Adiabatic invariant * ADITYA (tokamak) * Aeronomy * Afterglow plasma * ...
*
Magnetic flow meter A ''magnetic flow meter'' (mag meter, electromagnetic flow meter) is a transducer that measures fluid flow by the voltage induced across the liquid by its flow through a magnetic field. A magnetic field is applied to the metering tube, which resu ...
*
Magnetohydrodynamic turbulence Magnetohydrodynamic turbulence concerns the chaotic regimes of magnetofluid flow at high Reynolds number. Magnetohydrodynamics (MHD) deals with what is a quasi-neutral fluid with very high conductivity. The fluid approximation implies that the focu ...
*
MHD sensor Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is the study of the magnetic properties and behaviour of electrically conducting fluids. Examples of such magneto­fluids include plasmas, liquid metals, ...
*
Plasma stability The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it ...
*
Shocks and discontinuities (magnetohydrodynamics) In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can b ...


References


Further reading

* * Hugo K. Messerle, ''Magnetohydrodynamic Power Generation'', 1994, John Wiley, Chichester, Part of the UNESCO Energy Engineering Series (This is the source of the historical and generator design information). * Shioda, S. "Results of Feasibility Studies on Closed-Cycle MHD Power Plants", Proc. Plasma Tech. Conf., 1991, Sydney, Australia, pp. 189–200. * R.J. Rosa, ''Magnetohydrodynamic Energy Conversion'', 1987, Hemisphere Publishing, Washington, D.C. * G.J. Womac, ''MHD Power Generation'', 1969, Chapman and Hall, London.


External links


MHD generator Research at the University of Tennessee Space Institute
(archive) - 2004
Model of an MHD-generator at the Institute of Computational Modelling, Akademgorodok, Russia
- 2003

- 2003 * ttp://www.solarmhd.com High Efficiency Magnetohydrodynamic Power Generation 2015 {{Authority control Chemical engineering Electrical generators Energy conversion American inventions Magnetohydrodynamic generator Power station technology