HOME

TheInfoList



OR:

Magma () is the molten or semi-molten natural material from which all
igneous rock Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or ...
s are formed. Magma is found beneath the surface of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surface ...
, and evidence of
magmatism Magmatism is the emplacement of magma within and at the surface of the outer layers of a terrestrial planet, which solidifies as igneous rocks. It does so through magmatic activity or igneous activity, the production, intrusion and extrusion of ...
has also been discovered on other
terrestrial planet A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, ...
s and some
natural satellite A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are often colloquially referred to as ''moons'' ...
s. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle or the crust in various
tectonic Tectonics (; ) are the processes that control the structure and properties of the Earth's crust and its evolution through time. These include the processes of mountain building, the growth and behavior of the strong, old cores of continents k ...
settings, which on Earth include
subduction zone Subduction is a geological process in which the oceanic lithosphere is Geochemical cycle, recycled into the Earth's mantle at convergent boundary, convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less d ...
s, continental
rift zones A rift zone is a feature of some volcanoes, especially shield volcanoes, in which a set of linear cracks (or rifts) develops in a volcanic edifice, typically forming into two or three well-defined regions along the flanks of the vent. Believed t ...
,
mid-ocean ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diver ...
s and
hotspots Hotspot, Hot Spot or Hot spot may refer to: Places * Hot Spot, Kentucky, a community in the United States Arts, entertainment, and media Fictional entities * Hot Spot (comics), a name for the DC Comics character Isaiah Crockett * Hot Spot (T ...
. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in
magma chamber A magma chamber is a large pool of liquid rock beneath the surface of the Earth. The molten rock, or magma, in such a chamber is less dense than the surrounding country rock, which produces buoyant forces on the magma that tend to drive it upw ...
s or trans-crustal crystal-rich mush zones. During magma's storage in the crust, its composition may be modified by
fractional crystallization Fractional crystallization may refer to: * Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the ...
, contamination with crustal melts, magma mixing, and degassing. Following its ascent through the crust, magma may feed a
volcano A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates are ...
and be extruded as
lava Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or und ...
, or it may solidify underground to form an
intrusion In geology, an igneous intrusion (or intrusive body or simply intrusion) is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth. Intrusions have a wide variety of forms and com ...
, such as a
dike Dyke (UK) or dike (US) may refer to: General uses * Dyke (slang), a slang word meaning "lesbian" * Dike (geology), a subvertical sheet-like intrusion of magma or sediment * Dike (mythology), ''Dikē'', the Greek goddess of moral justice * Dikes, ...
, a sill, a
laccolith A laccolith is a body of intrusive rock with a dome-shaped upper surface and a level base, fed by a conduit from below. A laccolith forms when magma (molten rock) rising through the Earth's crust begins to spread out horizontally, prying apar ...
, a
pluton In geology, an igneous intrusion (or intrusive body or simply intrusion) is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth. Intrusions have a wide variety of forms and com ...
, or a
batholith A batholith () is a large mass of intrusive igneous rock (also called plutonic rock), larger than in area, that forms from cooled magma deep in Earth's crust. Batholiths are almost always made mostly of felsic or intermediate rock types, such ...
. While the study of magma has relied on observing magma after its transition into a
lava flow Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or und ...
, magma has been encountered
in situ ''In situ'' (; often not italicized in English) is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in ...
three times during geothermal drilling projects, twice in Iceland (see Use in energy production) and once in Hawaii.


Physical and chemical properties

Magma consists of liquid rock that usually contains suspended solid crystals. As magma approaches the surface and the
overburden pressure Pressure is force magnitude applied over an area. Overburden pressure is a geology term that denotes the pressure caused by the weight of the overlying layers of material at a specific depth under the earth's surface. Overburden pressure is also ca ...
drops, dissolved gases bubble out of the liquid, so that magma near the surface consists of materials in solid, liquid, and gas phases.


Composition

Most magma is rich in
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
. Rare nonsilicate magma can form by local melting of nonsilicate mineral deposits or by separation of a magma into separate
immiscible Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
silicate and nonsilicate liquid phases. Silicate magmas are molten mixtures dominated by
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well ...
and
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
, the most abundant
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s in the Earth's crust, with smaller quantities of
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It has ...
,
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
,
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
,
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in fr ...
,
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable is ...
, and
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosp ...
, and minor amounts of many other elements.
Petrologist Petrology () is the branch of geology that studies rocks and the conditions under which they form. Petrology has three subdivisions: igneous, metamorphic, and sedimentary petrology. Igneous and metamorphic petrology are commonly taught together ...
s routinely express the composition of a silicate magma in terms of the weight or
molar mass In chemistry, the molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance which is the number of moles in that sample, measured in moles. The molar mass is a bulk, not molecular, ...
fraction of the oxides of the major elements (other than oxygen) present in the magma. Because many of the properties of a magma (such as its viscosity and temperature) are observed to correlate with silica content, silicate magmas are divided into four chemical types based on silica content: ''felsic'', ''intermediate'', ''mafic'', and ''ultramafic''.


Felsic magma

''Felsic'' or
silicic Silicic is an adjective to describe magma or igneous rock rich in silica. The amount of silica that constitutes a silicic rock is usually defined as at least 63 percent. Granite and rhyolite are the most common silicic rocks. Silicic is the group ...
magmas have a silica content greater than 63%. They include
rhyolite Rhyolite ( ) is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals ( phenocrysts) in an otherwise fine-grained groundmass. The miner ...
and
dacite Dacite () is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. ...
magmas. With such a high silica content, these magmas are extremely viscous, ranging from 108 cP (105 Pa⋅s) for hot rhyolite magma at to 1011 cP (108 Pa⋅s) for cool rhyolite magma at . For comparison, water has a viscosity of about 1 cP (0.001 Pa⋅s). Because of this very high viscosity, felsic lavas usually erupt explosively to produce
pyroclastic Pyroclastic rocks (derived from the el, πῦρ, links=no, meaning fire; and , meaning broken) are clastic rocks composed of rock fragments produced and ejected by explosive volcanic eruptions. The individual rock fragments are known as pyroc ...
(fragmental) deposits. However, rhyolite lavas occasionally erupt effusively to form
lava spine Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or und ...
s,
lava dome In volcanology, a lava dome is a circular mound-shaped protrusion resulting from the slow extrusion of viscous lava from a volcano. Dome-building eruptions are common, particularly in convergent plate boundary settings. Around 6% of eruptions on ...
s or "coulees" (which are thick, short lava flows). The lavas typically fragment as they extrude, producing block lava flows. These often contain obsidian. Felsic lavas can erupt at temperatures as low as . Unusually hot (>950 °C; >1,740 °F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in the
Snake River Plain The Snake River cutting through the plain leaves many canyons and Canyon#List of gorges">gorges, such as this one near Twin Falls, Idaho The Snake River Plain is a geologic feature located primarily within the U.S. state of Idaho. It stret ...
of the northwestern United States.


Intermediate magma

''Intermediate'' or
andesitic Andesite () is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predomina ...
magmas contain 52% to 63% silica, and are lower in aluminium and usually somewhat richer in
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
and
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in fr ...
than felsic magmas. Intermediate lavas form andesite domes and block lavas, and may occur on steep
composite volcano A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and peri ...
es, such as in the Andes. They are also commonly hotter, in the range of ). Because of their lower silica content and higher eruptive temperatures, they tend to be much less viscous, with a typical viscosity of 3.5 × 106 cP (3,500 Pa⋅s) at . This is slightly greater than the viscosity of smooth
peanut butter Peanut butter is a food paste or spread made from ground, dry-roasted peanuts. It commonly contains additional ingredients that modify the taste or texture, such as salt, sweeteners, or emulsifiers. Peanut butter is consumed in many countr ...
. Intermediate magmas show a greater tendency to form
phenocrysts 300px, feldspathic phenocrysts. This granite, from the Switzerland">Swiss side of the Mont Blanc massif, has large white plagioclase phenocrysts, triclinic minerals that give trapezoid shapes when cut through). 1 euro coins, 1 euro coin (diameter ...
, Higher iron and magnesium tends to manifest as a darker
groundmass The matrix or groundmass of a rock is the finer-grained mass of material in which larger grains, crystals, or clasts are embedded. The matrix of an igneous rock consists of finer-grained, often microscopic, crystals in which larger crystals, ...
, including amphibole or pyroxene phenocrysts.


Mafic magmas

''Mafic'' or
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90% of a ...
ic magmas have a silica content of 52% to 45%. They are typified by their high ferromagnesian content, and generally erupt at temperatures of . Viscosities can be relatively low, around 104 to 105 cP (10 to 100 Pa⋅s), although this is still many orders of magnitude higher than water. This viscosity is similar to that of
ketchup Ketchup or catsup is a table condiment with a sweet and tangy flavor. The unmodified term ("ketchup") now typically refers to tomato ketchup, although early recipes used egg whites, mushrooms, oysters, grapes, mussels, or walnuts, among oth ...
. Basalt lavas tend to produce low-profile
shield volcano A shield volcano is a type of volcano named for its low profile, resembling a warrior's shield lying on the ground. It is formed by the eruption of highly fluid (low viscosity) lava, which travels farther and forms thinner flows than the more vi ...
es or
flood basalt A flood basalt (or plateau basalt) is the result of a giant volcanic eruption or series of eruptions that covers large stretches of land or the ocean floor with basalt lava. Many flood basalts have been attributed to the onset of a hotspot reachi ...
s, because the fluidal lava flows for long distances from the vent. The thickness of a basalt lava, particularly on a low slope, may be much greater than the thickness of the moving lava flow at any one time, because basalt lavas may "inflate" by supply of lava beneath a solidified crust. Most basalt lavas are of ''
ʻAʻā Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or und ...
'' or ''
pāhoehoe Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or und ...
'' types, rather than block lavas. Underwater, they can form
pillow lavas Pillow lavas are lavas that contain characteristic pillow-shaped structures that are attributed to the extrusion of the lava underwater, or ''subaqueous extrusion''. Pillow lavas in volcanic rock are characterized by thick sequences of disconti ...
, which are rather similar to entrail-type pahoehoe lavas on land.


Ultramafic magmas

''Ultramafic'' magmas, such as picritic basalt,
komatiite Komatiite () is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% MgO. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite wa ...
, and highly magnesian magmas that form
boninite Boninite is an extrusive rock high in both magnesium and silica, thought to be usually formed in fore-arc environments, typically during the early stages of subduction. The rock is named for its occurrence in the Izu-Bonin arc south of Japan. ...
, take the composition and temperatures to the extreme. All have a silica content under 45%. Komatiites contain over 18% magnesium oxide, and are thought to have erupted at temperatures of . At this temperature there is practically no polymerization of the mineral compounds, creating a highly mobile liquid. Viscosities of komatiite magmas are thought to have been as low as 100 to 1000 cP (0.1 to 1 Pa⋅s), similar to that of light motor oil. Most ultramafic lavas are no younger than the
Proterozoic The Proterozoic () is a geological eon spanning the time interval from 2500 to 538.8million years ago. It is the most recent part of the Precambrian "supereon". It is also the longest eon of the Earth's geologic time scale, and it is subdivided i ...
, with a few ultramafic magmas known from the
Phanerozoic The Phanerozoic Eon is the current geologic eon in the geologic time scale, and the one during which abundant animal and plant life has existed. It covers 538.8 million years to the present, and it began with the Cambrian Period, when anima ...
in Central America that are attributed to a hot
mantle plume A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hots ...
. No modern komatiite lavas are known, as the Earth's mantle has cooled too much to produce highly magnesian magmas.


Alkaline magmas

Some silicic magmas have an elevated content of
alkali metal oxide The alkali metals react with oxygen to form several different compounds: suboxides, oxides, peroxides, sesquioxides, superoxides, and ozonides. They all react violently with water. Alkali metal suboxides * Hexarubidium monoxide (Rb6O) h * Nonar ...
s (sodium and potassium), particularly in regions of
continental rifting In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics. Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-graben wi ...
, areas overlying deeply
subducted Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the ...
plates, or at intraplate
hotspots Hotspot, Hot Spot or Hot spot may refer to: Places * Hot Spot, Kentucky, a community in the United States Arts, entertainment, and media Fictional entities * Hot Spot (comics), a name for the DC Comics character Isaiah Crockett * Hot Spot (T ...
. Their silica content can range from ultramafic (
nephelinite Nephelinite is a fine-grained or aphanitic igneous rock made up almost entirely of nepheline and clinopyroxene (variety augite). If olivine is present, the rock may be classified as an olivine nephelinite. Nephelinite is dark in color and may rese ...
s,
basanite Basanite () is an igneous, volcanic (extrusive) rock with aphanitic to porphyritic texture. It is composed mostly of feldspathoids, pyroxenes, olivine, and plagioclase and forms from magma low in silica and enriched in alkali metal oxides that ...
s and
tephrite Tephrite is an igneous, volcanic (extrusive) rock, with aphanitic to porphyritic texture. Mineral content is usually abundant feldspathoids (leucite or nepheline), plagioclase, and lesser alkali feldspar. Pyroxenes (clinopyroxenes) are commo ...
s) to felsic (
trachyte Trachyte () is an extrusive igneous rock composed mostly of alkali feldspar. It is usually light-colored and aphanitic (fine-grained), with minor amounts of mafic minerals, and is formed by the rapid cooling of lava enriched with silica and a ...
s). They are more likely to be generated at greater depths in the mantle than subalkaline magmas. Olivine
nephelinite Nephelinite is a fine-grained or aphanitic igneous rock made up almost entirely of nepheline and clinopyroxene (variety augite). If olivine is present, the rock may be classified as an olivine nephelinite. Nephelinite is dark in color and may rese ...
magmas are both ultramafic and highly alkaline, and are thought to have come from much deeper in the mantle of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surface ...
than other magmas.


Nonsilicic magmas

Some lavas of unusual composition have erupted onto the surface of the Earth. These include: * Carbonatite and
natrocarbonatite Natrocarbonatite is a rare carbonatite lava which erupts from the Ol Doinyo Lengai volcano in Tanzania within the East African Rift of eastern Africa. Natrocarbonatite lavas were first documented in 1962, by J B Dawson. Composition Whereas mo ...
lavas are known from
Ol Doinyo Lengai Ol Doinyo Lengai (Oldoinyo Lengai), "Mountain of God" in the Maasai language, is an active volcano located in the Gregory Rift, south of Lake Natron within the Arusha Region of Tanzania, Africa. Part of the volcanic system of the East African Ri ...
volcano in
Tanzania Tanzania (; ), officially the United Republic of Tanzania ( sw, Jamhuri ya Muungano wa Tanzania), is a country in East Africa within the African Great Lakes region. It borders Uganda to the north; Kenya to the northeast; Comoro Islands and ...
, which is the sole example of an active carbonatite volcano. Carbonatites in the geologic record are typically 75% carbonate minerals, with lesser amounts of silica-undersaturated silicate minerals (such as
mica Micas ( ) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into extremely thin elastic plates. This characteristic is described as perfect basal cleavage. Mica is ...
s and olivine),
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ions, respectively, in the crystal. The formula of the admixture of the three most common ...
,
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With the ...
, and
pyrochlore Pyrochlore () is a mineral group of the niobium end member of the pyrochlore supergroup. The general formula, (where A and B are metals), represent a family of phases isostructural to the mineral pyrochlore. Pyrochlores are an important class of ...
. This may not reflect the original composition of the lava, which may have included sodium carbonate that was subsequently removed by hydrothermal activity, though laboratory experiments show that a calcite-rich magma is possible. Carbonatite lavas show
stable isotope ratio The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundanc ...
s indicating they are derived from the highly alkaline silicic lavas with which they are always associated, probably by separation of an immiscible phase. Natrocarbonatite lavas of Ol Doinyo Lengai are composed mostly of sodium carbonate, with about half as much calcium carbonate and half again as much potassium carbonate, and minor amounts of halides, fluorides, and sulphates. The lavas are extremely fluid, with viscosities only slightly greater than water, and are very cool, with measured temperatures of . *
Iron oxide Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of which ...
magmas are thought to be the source of the
iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the for ...
at
Kiruna (; se, Giron ; fi, Kiiruna ) is the northernmost city in Sweden, situated in the province of Lapland. It had 17,002 inhabitants in 2016 and is the seat of Kiruna Municipality (population: 23,167 in 2016) in Norrbotten County. The city was ...
,
Sweden Sweden, formally the Kingdom of Sweden,The United Nations Group of Experts on Geographical Names states that the country's formal name is the Kingdom of SwedenUNGEGN World Geographical Names, Sweden./ref> is a Nordic country located on ...
which formed during the
Proterozoic The Proterozoic () is a geological eon spanning the time interval from 2500 to 538.8million years ago. It is the most recent part of the Precambrian "supereon". It is also the longest eon of the Earth's geologic time scale, and it is subdivided i ...
. Iron oxide lavas of
Pliocene The Pliocene ( ; also Pleiocene) is the epoch in the geologic time scale that extends from 5.333 million to 2.58El Laco volcanic complex on the Chile-Argentina border. Iron oxide lavas are thought to be the result of
immiscible Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
separation of iron oxide magma from a parental magma of
calc-alkaline The calc-alkaline magma series is one of two main subdivisions of the subalkaline magma series, the other subalkaline magma series being the tholeiitic series. A magma series is a series of compositions that describes the evolution of a mafic ma ...
or alkaline composition. *
Sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
lava flows up to long and wide occur at
Lastarria Lastarria is a high stratovolcano that lies on the border between Chile and Argentina. It is remote and the surroundings are uninhabited but can be reached through an unpaved road. The volcano is part of the Central Volcanic Zone, one of the fo ...
volcano, Chile. They were formed by the melting of sulfur deposits at temperatures as low as .


Magmatic gases

The concentrations of different
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
es can vary considerably.
Water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous phase ...
is typically the most abundant magmatic gas, followed by carbon dioxide and
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic activ ...
. Other principal magmatic gases include hydrogen sulfide,
hydrogen chloride The compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride g ...
, and
hydrogen fluoride Hydrogen fluoride (fluorane) is an inorganic compound with the chemical formula . This colorless gas or liquid is the principal industrial source of fluorine, often as an aqueous solution called hydrofluoric acid. It is an important feedstock in ...
. The solubility of magmatic gases in magma depends on pressure, magma composition, and temperature. Magma that is extruded as lava is extremely dry, but magma at depth and under great pressure can contain a dissolved water content in excess of 10%. Water is somewhat less soluble in low-silica magma than high-silica magma, so that at 1,100 °C and 0.5
GPa Grading in education is the process of applying standardized measurements for varying levels of achievements in a course. Grades can be assigned as letters (usually A through F), as a range (for example, 1 to 6), as a percentage, or as a numbe ...
, a basaltic magma can dissolve 8% while a granite pegmatite magma can dissolve 11% . However, magmas are not necessarily saturated under typical conditions. Carbon dioxide is much less soluble in magmas than water, and frequently separates into a distinct fluid phase even at great depth. This explains the presence of carbon dioxide fluid inclusions in crystals formed in magmas at great depth.


Rheology

Viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inter ...
is a key melt property in understanding the behaviour of magmas. Whereas temperatures in common silicate lavas range from about for felsic lavas to for mafic lavas, the viscosity of the same lavas ranges over seven orders of magnitude, from 104 cP (10 Pa⋅s) for mafic lava to 1011 cP (108 Pa⋅s) for felsic magmas. The viscosity is mostly determined by composition but is also dependent on temperature. The tendency of felsic lava to be cooler than mafic lava increases the viscosity difference. The silicon ion is small and highly charged, and so it has a strong tendency to
coordinate In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
with four oxygen ions, which form a tetrahedral arrangement around the much smaller silicon ion. This is called a ''silica tetrahedron''. In a magma that is low in silicon, these silica tetrahedra are isolated, but as the silicon content increases, silica tetrahedra begin to partially polymerize, forming chains, sheets, and clumps of silica tetrahedra linked by bridging oxygen ions. These greatly increase the viscosity of the magma. File:Single tet.png, A single silica tetrahedron File:Double tet.png, Two silica tetrahedra joined by a bridging oxygen ion (tinted pink) The tendency towards polymerization is expressed as NBO/T, where NBO is the number of non-bridging oxygen ions and T is the number of network-forming ions. Silicon is the main network-forming ion, but in magmas high in sodium, aluminium also acts as a network former, and ferric iron can act as a network former when other network formers are lacking. Most other metallic ions reduce the tendency to polymerize and are described as network modifiers. In a hypothetical magma formed entirely from melted silica, NBO/T would be 0, while in a hypothetical magma so low in network formers that no polymerization takes place, NBO/T would be 4. Neither extreme is common in nature, but basalt magmas typically have NBO/T between 0.6 and 0.9, andesitic magmas have NBO/T of 0.3 to 0.5, and rhyolitic magmas have NBO/T of 0.02 to 0.2. Water acts as a network modifier, and dissolved water drastically reduces melt viscosity. Carbon dioxide neutralizes network modifiers, so dissolved carbon dioxide increases the viscosity. Higher-temperature melts are less viscous, since more thermal energy is available to break bonds between oxygen and network formers. Most magmas contain solid crystals of various minerals, fragments of exotic rocks known as
xenolith A xenolith ("foreign rock") is a rock fragment (country rock) that becomes enveloped in a larger rock during the latter's development and solidification. In geology, the term ''xenolith'' is almost exclusively used to describe inclusions in igne ...
s and fragments of previously solidified magma. The crystal content of most magmas gives them
thixotropic Thixotropy is a time-dependent shear thinning property. Certain gels or fluids that are thick or viscous under static conditions will flow (become thinner, less viscous) over time when shaken, agitated, shear-stressed, or otherwise stressed (ti ...
and
shear thinning In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudo-plastic behaviour, and is usually defined as excluding time-dependent effects, suc ...
properties. In other words, most magmas do not behave like Newtonian fluids, in which the rate of flow is proportional to the shear stress. Instead, a typical magma is a
Bingham fluid A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after Eugene C. Bingham who proposed its mathematical form. It is used as a common mathematical m ...
, which shows considerable resistance to flow until a stress threshold, called the yield stress, is crossed. This results in
plug flow In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. T ...
of partially crystalline magma. A familiar example of plug flow is toothpaste squeezed out of a toothpaste tube. The toothpaste comes out as a semisolid plug, because shear is concentrated in a thin layer in the toothpaste next to the tube, and only here does the toothpaste behave as a fluid. Thixotropic behavior also hinders crystals from settling out of the magma. Once the crystal content reaches about 60%, the magma ceases to behave like a fluid and begins to behave like a solid. Such a mixture of crystals with melted rock is sometimes described as ''crystal mush''. Magma is typically also
viscoelastic In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly ...
, meaning it flows like a liquid under low stresses, but once the applied stress exceeds a critical value, the melt cannot dissipate the stress fast enough through relaxation alone, resulting in transient fracture propagation. Once stresses are reduced below the critical threshold, the melt viscously relaxes once more and heals the fracture.


Temperature

Temperatures of lava, which is magma extruded onto the surface, are in the range , but very rare carbonatite magmas may be as cool as , and
komatiite Komatiite () is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% MgO. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite wa ...
magmas may have been as hot as . Magma has occasionally been encountered during drilling in geothermal fields, including drilling in Hawaii that penetrated a dacitic magma body at a depth of . The temperature of this magma was estimated at . Temperatures of deeper magmas must be inferred from theoretical computations and the geothermal gradient. Most magmas contain some solid crystals suspended in the liquid phase. This indicates that the temperature of the magma lies between the
solidus Solidus (Latin for "solid") may refer to: * Solidus (coin) The ''solidus'' (Latin 'solid';  ''solidi'') or nomisma ( grc-gre, νόμισμα, ''nómisma'',  'coin') was a highly pure gold coin issued in the Late Roman Empire and By ...
, which is defined as the temperature at which the magma completely solidifies, and the
liquidus The liquidus temperature, TL or Tliq, specifies the temperature above which a material is completely liquid, and the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium. It is mostly used for impure subst ...
, defined as the temperature at which the magma is completely liquid. Calculations of solidus temperatures at likely depths suggests that magma generated beneath areas of rifting starts at a temperature of about . Magma generated from mantle plumes may be as hot as . The temperature of magma generated in subduction zones, where water vapor lowers the melting temperature, may be as low as .


Density

Magma densities depend mostly on composition, iron content being the most important parameter.usu.edu - ''Geology'' 326, "Properties of Magmas"
2005-02-11
Magma expands slightly at lower pressure or higher temperature. When magma approaches the surface, its dissolved gases begin to bubble out of the liquid. These bubbles had significantly reduced the density of the magma at depth and helped drive it toward the surface in the first place.


Origins

The temperature within the interior of the earth is described by the
geothermal gradient Geothermal gradient is the rate of temperature change with respect to increasing depth in Earth's interior. As a general rule, the crust temperature rises with depth due to the heat flow from the much hotter mantle; away from tectonic plate b ...
, which is the rate of temperature change with depth. The geothermal gradient is established by the balance between heating through
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
in the Earth's interior and heat loss from the surface of the earth. The geothermal gradient averages about 25 °C/km in the Earth's upper crust, but this varies widely by region, from a low of 5–10 °C/km within oceanic trenches and subduction zones to 30–80 °C/km along
mid-ocean ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diver ...
s or near
mantle plume A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hots ...
s. The gradient becomes less steep with depth, dropping to just 0.25 to 0.3  °C/km in the mantle, where slow convection efficiently transports heat. The average geothermal gradient is not normally steep enough to bring rocks to their melting point anywhere in the crust or upper mantle, so magma is produced only where the geothermal gradient is unusually steep or the melting point of the rock is unusually low. However, the ascent of magma towards the surface in such settings is the most important process for transporting heat through the crust of the Earth. Rocks may melt in response to a decrease in pressure, to a change in composition (such as an addition of water), to an increase in temperature, or to a combination of these processes. Other mechanisms, such as melting from a
meteorite impact An impact event is a collision between astronomical objects causing measurable effects. Impact events have physical consequences and have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or m ...
, are less important today, but impacts during the
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
of the Earth led to extensive melting, and the outer several hundred kilometers of our early Earth was probably an ocean of magma. Impacts of large meteorites in the last few hundred million years have been proposed as one mechanism responsible for the extensive basalt magmatism of several large igneous provinces.


Decompression

Decompression melting occurs because of a decrease in pressure. It is the most important mechanism for producing magma from the upper mantle. The
solidus Solidus (Latin for "solid") may refer to: * Solidus (coin) The ''solidus'' (Latin 'solid';  ''solidi'') or nomisma ( grc-gre, νόμισμα, ''nómisma'',  'coin') was a highly pure gold coin issued in the Late Roman Empire and By ...
temperatures of most rocks (the temperatures below which they are completely solid) increase with increasing pressure in the absence of water.
Peridotite Peridotite ( ) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high prop ...
at depth in the
Earth's mantle Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01 × 1024 kg and thus makes up 67% of the mass of Earth. It has a thickness of making up about 84% of Earth's volume. It is predominantly sol ...
may be hotter than its solidus temperature at some shallower level. If such rock rises during the
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convecti ...
of solid mantle, it will cool slightly as it expands in an
adiabatic process In thermodynamics, an adiabatic process (Greek: ''adiábatos'', "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, a ...
, but the cooling is only about 0.3 °C per kilometer. Experimental studies of appropriate
peridotite Peridotite ( ) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high prop ...
samples document that the solidus temperatures increase by 3 °C to 4 °C per kilometer. If the rock rises far enough, it will begin to melt. Melt droplets can coalesce into larger volumes and be intruded upwards. This process of melting from the upward movement of solid mantle is critical in the evolution of the Earth. Decompression melting creates the ocean crust at
mid-ocean ridges A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diver ...
, making it by far the most important source of magma on Earth. It also causes
volcanism Volcanism, vulcanism or volcanicity is the phenomenon of eruption of molten rock (magma) onto the surface of the Earth or a solid-surface planet or moon, where lava, pyroclastics, and volcanic gases erupt through a break in the surface called a ...
in intraplate regions, such as Europe, Africa and the Pacific sea floor. Intraplate volcanism is attributed to the rise of
mantle plume A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hots ...
s or to intraplate extension, with the importance of each mechanism being a topic of continuing research.


Effects of water and carbon dioxide

The change of rock composition most responsible for the creation of magma is the addition of water. Water lowers the solidus temperature of rocks at a given pressure. For example, at a depth of about 100 kilometers, peridotite begins to melt near 800 °C in the presence of excess water, but near 1,500 °C in the absence of water. Water is driven out of the oceanic
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of up to thousands of years o ...
in
subduction zone Subduction is a geological process in which the oceanic lithosphere is Geochemical cycle, recycled into the Earth's mantle at convergent boundary, convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less d ...
s, and it causes melting in the overlying mantle. Hydrous magmas with the composition of basalt or andesite are produced directly and indirectly as results of dehydration during the subduction process. Such magmas, and those derived from them, build up
island arc Island arcs are long chains of active volcanoes with intense seismic activity found along convergent tectonic plate boundaries. Most island arcs originate on oceanic crust and have resulted from the descent of the lithosphere into the mantle alon ...
s such as those in the
Pacific Ring of Fire The Ring of Fire (also known as the Pacific Ring of Fire, the Rim of Fire, the Girdle of Fire or the Circum-Pacific belt) is a region around much of the rim of the Pacific Ocean where many volcanic eruptions and earthquakes occur. The Ring o ...
. These magmas form rocks of the
calc-alkaline The calc-alkaline magma series is one of two main subdivisions of the subalkaline magma series, the other subalkaline magma series being the tholeiitic series. A magma series is a series of compositions that describes the evolution of a mafic ma ...
series, an important part of the
continental crust Continental crust is the layer of igneous, sedimentary, and metamorphic rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as continental shelves. This layer is sometimes called ''sial'' bec ...
. The addition of carbon dioxide is relatively a much less important cause of magma formation than the addition of water, but genesis of some silica-undersaturated magmas has been attributed to the dominance of carbon dioxide over water in their mantle source regions. In the presence of carbon dioxide, experiments document that the peridotite solidus temperature decreases by about 200 °C in a narrow pressure interval at pressures corresponding to a depth of about 70 km. At greater depths, carbon dioxide can have more effect: at depths to about 200 km, the temperatures of initial melting of a carbonated peridotite composition were determined to be 450 °C to 600 °C lower than for the same composition with no carbon dioxide. Magmas of rock types such as
nephelinite Nephelinite is a fine-grained or aphanitic igneous rock made up almost entirely of nepheline and clinopyroxene (variety augite). If olivine is present, the rock may be classified as an olivine nephelinite. Nephelinite is dark in color and may rese ...
, carbonatite, and
kimberlite Kimberlite is an igneous rock and a rare variant of peridotite. It is most commonly known to be the main host matrix for diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an diamond called the Star of So ...
are among those that may be generated following an influx of carbon dioxide into mantle at depths greater than about 70 km.


Temperature increase

Increase in temperature is the most typical mechanism for formation of magma within continental crust. Such temperature increases can occur because of the upward intrusion of magma from the mantle. Temperatures can also exceed the solidus of a crustal rock in continental crust thickened by compression at a
plate boundary Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large te ...
. The plate boundary between the Indian and Asian continental masses provides a well-studied example, as the
Tibetan Plateau The Tibetan Plateau (, also known as the Qinghai–Tibet Plateau or the Qing–Zang Plateau () or as the Himalayan Plateau in India, is a vast elevated plateau located at the intersection of Central, South and East Asia covering most of the Ti ...
just north of the boundary has crust about 80 kilometers thick, roughly twice the thickness of normal continental crust. Studies of electrical
resistivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
deduced from magnetotelluric data have detected a layer that appears to contain silicate melt and that stretches for at least 1,000 kilometers within the middle crust along the southern margin of the Tibetan Plateau. Granite and
rhyolite Rhyolite ( ) is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals ( phenocrysts) in an otherwise fine-grained groundmass. The miner ...
are types of igneous rock commonly interpreted as products of the melting of continental crust because of increases in temperature. Temperature increases also may contribute to the melting of
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of up to thousands of years o ...
dragged down in a subduction zone.


The melting process

When rocks melt, they do so over a range of temperature, because most rocks are made of several
minerals In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. ...
, which all have different melting points. The temperature at which the first melt appears (the solidus) is lower than the melting temperature of any one of the pure minerals. This is similar to the lowering of the melting point of ice when it is mixed with salt. The first melt is called the '' eutectic'' and has a composition that depends on the combination of minerals present. For example, a mixture of
anorthite Anorthite is the calcium endmember of the plagioclase feldspar mineral series. The chemical formula of pure anorthite is Ca Al2 Si2O8. Anorthite is found in mafic igneous rocks. Anorthite is rare on the Earth but abundant on the Moon. Mineralo ...
and
diopside Diopside is a monoclinic pyroxene mineral with composition . It forms complete solid solution series with hedenbergite () and augite, and partial solid solutions with orthopyroxene and pigeonite. It forms variably colored, but typically dull g ...
, which are two of the predominant minerals in
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90% of a ...
, begins to melt at about 1274 °C. This is well below the melting temperatures of 1392 °C for pure diopside and 1553 °C for pure anorthite. The resulting melt is composed of about 43 wt% anorthite. As additional heat is added to the rock, the temperature remains at 1274 °C until either the anorthite or diopside is fully melted. The temperature then rises as the remaining mineral continues to melt, which shifts the melt composition away from the eutectic. For example, if the content of anorthite is greater than 43%, the entire supply of diopside will melt at 1274 °C., along with enough of the anorthite to keep the melt at the eutectic composition. Further heating causes the temperature to slowly rise as the remaining anorthite gradually melts and the melt becomes increasingly rich in anorthite liquid. If the mixture has only a slight excess of anorthite, this will melt before the temperature rises much above 1274 °C. If the mixture is almost all anorthite, the temperature will reach nearly the melting point of pure anorthite before all the anorthite is melted. If the anorthite content of the mixture is less than 43%, then all the anorthite will melt at the eutectic temperature, along with part of the diopside, and the remaining diopside will then gradually melt as the temperature continues to rise. Because of eutectic melting, the composition of the melt can be quite different from the source rock. For example, a mixture of 10% anorthite with diopside could experience about 23% partial melting before the melt deviated from the eutectic, which has the composition of about 43% anorthite. This effect of partial melting is reflected in the compositions of different magmas. A low degree of partial melting of the upper mantle (2% to 4%) can produce highly alkaline magmas such as
melilitite Melilite refers to a mineral of the melilite group. Minerals of the group are solid solutions of several endmembers, the most important of which are gehlenite and åkermanite. A generalized formula for common melilite is ( Ca, Na)2( Al, Mg, ...
s, while a greater degree of partial melting (8% to 11%) can produce alkali olivine basalt. Oceanic magmas likely result from partial melting of 3% to 15% of the source rock. Some calk-alkaline
granitoid A granitoid is a generic term for a diverse category of coarse-grained igneous rocks that consist predominantly of quartz, plagioclase, and alkali feldspar. Granitoids range from plagioclase-rich tonalites to alkali-rich syenites and from quartz ...
s may be produced by a high degree of partial melting, as much as 15% to 30%. High-magnesium magmas, such as
komatiite Komatiite () is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% MgO. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite wa ...
and
picrite Picrite basalt or picrobasalt is a variety of high-magnesium olivine basalt that is very rich in the mineral olivine. It is dark with yellow-green olivine phenocrysts (20-50%) and black to dark brown pyroxene, mostly augite. The olivine-rich p ...
, may also be the products of a high degree of partial melting of mantle rock. Certain chemical elements, called
incompatible element In petrology and geochemistry, an incompatible element is one that is unsuitable in size and/or charge to the cation sites of the minerals of which it is included. It is defined by the partition coefficient between rock-forming minerals and melt b ...
s, have a combination of
ionic radius Ionic radius, ''r''ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation ...
and
ionic charge An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
that is unlike that of the more abundant elements in the source rock. The ions of these elements fit rather poorly in the structure of the minerals making up the source rock, and readily leave the solid minerals to become highly concentrated in melts produced by a low degree of partial melting. Incompatible elements commonly include
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosp ...
,
barium Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. The ...
,
caesium Caesium ( IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
, and
rubidium Rubidium is the chemical element with the symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher ...
, which are large and weakly charged (the large-ion lithophile elements, or LILEs), as well as elements whose ions carry a high charge (the high-field-strength elements, or HSFEs), which include such elements as
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'', ...
,
niobium Niobium is a chemical element with chemical symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has si ...
,
hafnium Hafnium is a chemical element with the Symbol (chemistry), symbol Hf and atomic number 72. A lustre (mineralogy), lustrous, silvery gray, tetravalence, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirco ...
,
tantalum Tantalum is a chemical element with the symbol Ta and atomic number 73. Previously known as ''tantalium'', it is named after Tantalus, a villain in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that is ...
, the
rare-earth elements The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silve ...
, and the
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s. Potassium can become so enriched in melt produced by a very low degree of partial melting that, when the magma subsequently cools and solidifies, it forms unusual potassic rock such as
lamprophyre Lamprophyres () are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica- undersaturated mafic or ultramafic rocks with high magnesium ox ...
,
lamproite Lamproite is an ultrapotassic mantle-derived volcanic or subvolcanic rock. It has low CaO, Al2O3, Na2O, high K2O/Al2O3, a relatively high MgO content and extreme enrichment in incompatible elements. Lamproites are geographically widespread y ...
, or
kimberlite Kimberlite is an igneous rock and a rare variant of peridotite. It is most commonly known to be the main host matrix for diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an diamond called the Star of So ...
. When enough rock is melted, the small globules of melt (generally occurring between mineral grains) link up and soften the rock. Under pressure within the earth, as little as a fraction of a percent of partial melting may be sufficient to cause melt to be squeezed from its source. Melt rapidly separates from its source rock once the degree of partial melting exceeds 30%. However, usually much less than 30% of a magma source rock is melted before the heat supply is exhausted. Pegmatite may be produced by low degrees of partial melting of the crust. Some
granite Granite () is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underg ...
-composition magmas are eutectic (or cotectic) melts, and they may be produced by low to high degrees of partial melting of the crust, as well as by
fractional crystallization Fractional crystallization may refer to: * Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the ...
.


Evolution of magmas

Most
magmas Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...
are fully melted only for small parts of their histories. More typically, they are mixes of melt and crystals, and sometimes also of gas bubbles. Melt, crystals, and bubbles usually have different densities, and so they can separate as magmas evolve. As magma cools, minerals typically
crystallize Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely depo ...
from the melt at different temperatures. This resembles the original melting process in reverse. However, because the melt has usually separated from its original source rock and moved to a shallower depth, the reverse process of crystallization is not precisely identical. For example, if a melt was 50% each of diopside and anorthite, then anorthite would begin crystallizing from the melt at a temperature somewhat higher than the eutectic temperature of 1274 °C. This shifts the remaining melt towards its eutectic composition of 43% diopside. The eutectic is reached at 1274 °C, the temperature at which diopside and anorthite begin crystallizing together. If the melt was 90% diopside, the diopside would begin crystallizing first until the eutectic was reached. If the crystals remained suspended in the melt, the crystallization process would not change the overall composition of the melt plus solid minerals. This situation is described as ''equillibrium crystallization''. However, in a series of experiments culminating in his 1915 paper, ''Crystallization-differentiation in silicate liquids'',
Norman L. Bowen Norman Levi Bowen FRS (June 21, 1887 – September 11, 1956) was a Canadian geologist. Bowen "revolutionized experimental petrology and our understanding of mineral crystallization". Beginning geology students are familiar with Bowen's reaction s ...
demonstrated that crystals of
olivine The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickl ...
and diopside that crystallized out of a cooling melt of
forsterite Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthorh ...
, diopside, and silica would sink through the melt on geologically relevant time scales. Geologists subsequently found considerable field evidence of such ''
fractional crystallization Fractional crystallization may refer to: * Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the ...
''. When crystals separate from a magma, then the residual magma will differ in composition from the parent magma. For instance, a magma of gabbroic composition can produce a residual melt of
granitic A granitoid is a generic term for a diverse category of coarse-grained igneous rocks that consist predominantly of quartz, plagioclase, and alkali feldspar. Granitoids range from plagioclase-rich tonalites to alkali-rich syenites and from quartz ...
composition if early formed crystals are separated from the magma. Gabbro may have a
liquidus The liquidus temperature, TL or Tliq, specifies the temperature above which a material is completely liquid, and the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium. It is mostly used for impure subst ...
temperature near 1,200 °C, and the derivative granite-composition melt may have a liquidus temperature as low as about 700 °C.
Incompatible element In petrology and geochemistry, an incompatible element is one that is unsuitable in size and/or charge to the cation sites of the minerals of which it is included. It is defined by the partition coefficient between rock-forming minerals and melt b ...
s are concentrated in the last residues of magma during fractional crystallization and in the first melts produced during partial melting: either process can form the magma that crystallizes to pegmatite, a rock type commonly enriched in incompatible elements. Bowen's reaction series is important for understanding the idealised sequence of fractional crystallisation of a magma. Magma composition can be determined by processes other than partial melting and fractional crystallization. For instance, magmas commonly interact with rocks they intrude, both by melting those rocks and by reacting with them. Assimilation near the roof of a magma chamber and fractional crystallization near its base can even take place simultaneously. Magmas of different compositions can mix with one another. In rare cases, melts can separate into two immiscible melts of contrasting compositions.


Primary magmas

When rock melts, the liquid is a ''primary magma''. Primary magmas have not undergone any differentiation and represent the starting composition of a magma. In practice, it is difficult to unambiguously identify primary magmas, though it has been suggested that
boninite Boninite is an extrusive rock high in both magnesium and silica, thought to be usually formed in fore-arc environments, typically during the early stages of subduction. The rock is named for its occurrence in the Izu-Bonin arc south of Japan. ...
is a variety of andesite crystallized from a primary magma. The
Great Dyke The Great Dyke is a linear geological feature that trends nearly north-south through the centre of Zimbabwe passing just to the west of the capital, Harare. It consists of a band of short, narrow ridges and hills spanning for approximately . The ...
of
Zimbabwe Zimbabwe (), officially the Republic of Zimbabwe, is a landlocked country located in Southeast Africa, between the Zambezi and Limpopo Rivers, bordered by South Africa to the south, Botswana to the south-west, Zambia to the north, and Mozam ...
has also been interpreted as rock crystallized from a primary magma. The interpretation of
leucosomes Migmatite is a composite rock found in medium and high-grade metamorphic environments, commonly within Precambrian cratonic blocks. It consists of two or more constituents often layered repetitively: one layer is an older metamorphic rock th ...
of
migmatite Migmatite is a composite rock found in medium and high-grade metamorphic environments, commonly within Precambrian cratonic blocks. It consists of two or more constituents often layered repetitively: one layer is an older metamorphic rock tha ...
s as primary magmas is contradicted by zircon data, which suggests leucosomes are a residue (a
cumulate rock Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group ...
) left by extraction of a primary magma.


Parental magma

When it is impossible to find the primitive or primary magma composition, it is often useful to attempt to identify a parental magma. A parental magma is a magma composition from which the observed range of magma chemistries has been derived by the processes of
igneous differentiation In geology, igneous differentiation, or magmatic differentiation, is an umbrella term for the various processes by which magmas undergo bulk chemical change during the partial melting process, cooling, emplacement, or eruption. The sequence of ( ...
. It need not be a primitive melt. For instance, a series of basalt flows are assumed to be related to one another. A composition from which they could reasonably be produced by fractional crystallization is termed a ''parental magma''. Fractional crystallization models would be produced to test the hypothesis that they share a common parental magma.


Migration and solidification

Magma develops within the mantle or crust where the temperature and pressure conditions favor the molten state. After its formation, magma buoyantly rises toward the Earth's surface, due to its lower density than the source rock. As it migrates through the crust, magma may collect and reside in
magma chamber A magma chamber is a large pool of liquid rock beneath the surface of the Earth. The molten rock, or magma, in such a chamber is less dense than the surrounding country rock, which produces buoyant forces on the magma that tend to drive it upw ...
s (though recent work suggests that magma may be stored in trans-crustal crystal-rich mush zones rather than dominantly liquid magma chambers ). Magma can remain in a chamber until it either cools and crystallizes to form
intrusive rock Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form '' intrusions'', such as batholiths, dikes, sills, laccoliths, and volcanic necks.Intrusive RocksIntrusive rocks accessdate: Marc ...
, it erupts as a
volcano A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates are ...
, or it moves into another magma chamber.


Plutonism

When magma cools it begins to form solid mineral phases. Some of these settle at the bottom of the magma chamber forming
cumulates Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group ...
that might form mafic
layered intrusion A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions can be many kilometres in area covering from around to over and several hundred metres to ...
s. Magma that cools slowly within a magma chamber usually ends up forming bodies of plutonic rocks such as
gabbro Gabbro () is a phaneritic (coarse-grained), mafic intrusive igneous rock formed from the slow cooling of magnesium-rich and iron-rich magma into a holocrystalline mass deep beneath the Earth's surface. Slow-cooling, coarse-grained gabbro is ch ...
,
diorite Diorite ( ) is an intrusive igneous rock formed by the slow cooling underground of magma (molten rock) that has a moderate content of silica and a relatively low content of alkali metals. It is intermediate in composition between low-sili ...
and
granite Granite () is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underg ...
, depending upon the composition of the magma. Alternatively, if the magma is erupted it forms
volcanic rock Volcanic rock (often shortened to volcanics in scientific contexts) is a rock formed from lava erupted from a volcano. In other words, it differs from other igneous rock by being of volcanic origin. Like all rock types, the concept of volcanic r ...
s such as
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90% of a ...
, andesite and
rhyolite Rhyolite ( ) is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals ( phenocrysts) in an otherwise fine-grained groundmass. The miner ...
(the extrusive equivalents of gabbro, diorite and granite, respectively).


Volcanism

Magma that is extruded onto the surface during a volcanic eruption is called
lava Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or und ...
. Lava cools and solidifies relatively quickly compared to underground bodies of magma. This fast cooling does not allow crystals to grow large, and a part of the melt does not crystallize at all, becoming glass. Rocks largely composed of volcanic glass include obsidian,
scoria Scoria is a pyroclastic, highly vesicular, dark-colored volcanic rock that was ejected from a volcano as a molten blob and cooled in the air to form discrete grains or clasts.Neuendorf, K.K.E., J.P. Mehl, Jr., and J.A. Jackson, eds. (2005) '' ...
and
pumice Pumice (), called pumicite in its powdered or dust form, is a volcanic rock that consists of highly vesicular rough-textured volcanic glass, which may or may not contain crystals. It is typically light-colored. Scoria is another vesicular vol ...
. Before and during volcanic eruptions,
volatiles Volatiles are the group of chemical elements and chemical compounds that can be readily vaporized. In contrast with volatiles, elements and compounds that are not readily vaporized are known as refractory substances. On planet Earth, the term ...
such as CO2 and H2O partially leave the melt through a process known as
exsolution A solid solution, a term popularly used for metals, is a homogenous mixture of two different kinds of atoms in solid state and have a single crystal structure. Many examples can be found in metallurgy, geology, and solid-state chemistry. The wo ...
. Magma with low water content becomes increasingly
viscous The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inter ...
. If massive exsolution occurs when magma heads upwards during a volcanic eruption, the resulting eruption is usually explosive.


Use in energy production

The
Iceland Deep Drilling Project The Iceland Deep Drilling Project (IDDP) is a geothermal project established in 2000 by a consortium of the National Energy Authority of Iceland (Orkustofnun/OS) and four of Iceland's leading energy companies: Hitaveita Sudurnesja (HS), Landsvir ...
, while drilling several 5,000 m holes in an attempt to harness the heat in the volcanic bedrock below the surface of Iceland, struck a pocket of magma at 2,100 m in 2009. Because this was only the third time in recorded history that magma had been reached, IDDP decided to invest in the hole, naming it IDDP-1. A cemented steel case was constructed in the hole with a perforation at the bottom close to the magma. The high temperatures and pressure of the magma steam were used to generate 36 MW of power, making IDDP-1 the world's first magma-enhanced geothermal system.


References

{{Authority control Igneous petrology Igneous rocks Volcanism Earth's crust