HOME

TheInfoList



OR:

A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring,
grinding Grind is the cross-sectional shape of a blade. Grind, grinds, or grinding may also refer to: Grinding action * Grinding (abrasive cutting), a method of crafting * Grinding (dance), suggestive club dancing * Grinding (video gaming), repetitive and ...
, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the work piece and provide a guided movement of the parts of the machine. Thus, the relative movement between the workpiece and the
cutting tool In the context of machining, a cutting tool or cutter is typically a hardened metal tool that is used to cut, shape, and remove material from a workpiece by means of machining tools as well as abrasive tools by way of shear deformation. The major ...
(which is called the toolpath) is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or " freehand". It is a power-driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material. The precise definition of the term ''machine tool'' varies among users, as discussed below. While all machine tools are "machines that help people to make things", not all factory machines are machine tools. Today machine tools are typically powered other than by the human muscle (e.g., electrically, hydraulically, or via line shaft), used to make manufactured parts (components) in various ways that include cutting or certain other kinds of deformation. With their inherent precision, machine tools enabled the economical production of interchangeable parts.


Nomenclature and key concepts, interrelated

Many
historians of technology A historian is a person who studies and writes about the past and is regarded as an authority on it. Historians are concerned with the continuous, methodical narrative and research of past events as relating to the human race; as well as the stu ...
consider that true machine tools were born when the toolpath first became guided by the machine itself in some way, at least to some extent, so that direct, freehand human guidance of the toolpath (with hands, feet, or mouth) was no longer the only guidance used in the cutting or forming process. In this view of the definition, the term, arising at a time when all tools up till then had been hand tools, simply provided a label for "tools that were machines instead of hand tools". Early lathes, those prior to the late
medieval In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire ...
period, and modern woodworking lathes and potter's wheels may or may not fall under this definition, depending on how one views the headstock spindle itself; but the earliest historical records of a lathe with direct mechanical control ''of the cutting tool's path'' are of a screw-cutting lathe dating to about 1483.. This lathe "produced screw threads out of wood and employed a true compound slide rest". The mechanical toolpath guidance grew out of various root concepts: * First is the spindle concept itself, which constrains workpiece or tool movement to
rotation around a fixed axis Rotation around a fixed axis is a special case of rotational motion. The fixed-axis hypothesis excludes the possibility of an axis changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rot ...
. This ancient concept predates machine tools per se; the earliest lathes and potter's wheels incorporated it for the workpiece, but the movement of the tool itself on these machines was entirely freehand. * The machine slide ( tool way), which has many forms, such as dovetail ways, box ways, or cylindrical column ways. Machine slides constrain tool or workpiece movement linearly. If a stop is added, the ''length'' of the line can also be accurately controlled. (Machine slides are essentially a subset of
linear bearing A linear-motion bearing or linear slide is a bearing designed to provide free motion in one direction. There are many different types of linear motion bearings. Motorized linear slides such as machine slides, X-Y tables, roller tables and som ...
s, although the language used to classify these various
machine element Machine element or hardware refers to an elementary component of a machine. These elements consist of three basic types: # '' structural components'' such as frame members, bearings, axles, splines, fasteners, seals, and lubricants, # '' mech ...
s may be defined differently by some users in some contexts, and some elements may be distinguished by contrasting with others) * Tracing, which involves following the contours of a model or template and transferring the resulting motion to the toolpath. *
Cam Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the bin ...
operation, which is related in principle to tracing but can be a step or two removed from the traced element's matching the reproduced element's final shape. For example, several cams, no one of which directly matches the desired output shape, can actuate a complex toolpath by creating component vectors that add up to a net toolpath. * Van Der Waals Force between like materials is high; freehand manufacture of square plates, produces only square, flat, machine tool building reference components, accurate to millionths of an inch, but of nearly no variety. The process of feature replication allows the flatness and squareness of a milling machine cross slide assembly, or the roundness, lack of taper, and squareness of the two axes of a lathe machine to be transferred to a machined work piece with accuracy and precision better than a thousandth of an inch, not as fine as millionths of an inch. As the fit between sliding parts of a made product, machine, or machine tool approaches this critical thousandth of an inch measurement, lubrication and capillary action combine to prevent Van Der Waals force from welding like metals together, extending the lubricated life of sliding parts by a factor of thousands to millions; the disaster of oil depletion in the conventional automotive engine is an accessible demonstration of the need, and in aerospace design, like-to-unlike design is used along with solid lubricants to prevent Van Der Waals welding from destroying mating surfaces. Given the modulus of elasticity of metals, the range of fit tolerances near one thousandth of an inch correlates to the relevant range of constraint between at one extreme, permanent assembly of two mating parts and at the other, a free sliding fit of those same two parts. Abstractly programmable toolpath guidance began with mechanical solutions, such as in musical box cams and Jacquard looms. The
convergence Convergence may refer to: Arts and media Literature *''Convergence'' (book series), edited by Ruth Nanda Anshen *Convergence (comics), "Convergence" (comics), two separate story lines published by DC Comics: **A four-part crossover storyline that ...
of programmable mechanical control with machine tool toolpath control was delayed many decades, in part because the programmable control methods of musical boxes and looms lacked the rigidity for machine tool toolpaths. Later, electromechanical solutions (such as servos) and soon electronic solutions (including computers) were added, leading to numerical control and computer numerical control. When considering the difference between freehand toolpaths and machine-constrained toolpaths, the concepts of accuracy and precision, efficiency, and
productivity Productivity is the efficiency of production of goods or services expressed by some measure. Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input used in a production proces ...
become important in understanding ''why'' the machine-constrained option adds value. Matter-Additive, Matter-Preserving, and Matter-Subtractive "Manufacturing" can proceed in sixteen ways: Firstly, the work may be held either in a hand, or a clamp; secondly, the tool may be held either in a hand, or a clamp; thirdly, the energy can come from either the hand(s) holding the tool and/or the work, or from some external source, including for examples a foot treadle by the same worker, or a motor, without limitation; and finally, the control can come from either the hand(s) holding the tool and/or the work, or from some other source, including computer numerical control. With two choices for each of four parameters, the types are enumerated to sixteen types of Manufacturing, where Matter-Additive might mean painting on canvas as readily as it might mean 3D printing under computer control, Matter-Preserving might mean forging at the coal fire as readily as stamping license plates, and Matter-Subtracting might mean casually whittling a pencil point as readily as it might mean precision grinding the final form of a laser deposited turbine blade. Humans are generally quite talented in their freehand movements; the drawings, paintings, and
sculpture Sculpture is the branch of the visual arts that operates in three dimensions. Sculpture is the three-dimensional art work which is physically presented in the dimensions of height, width and depth. It is one of the plastic arts. Durable ...
s of artists such as Michelangelo or Leonardo da Vinci, and of countless other talented people, show that human freehand toolpath has great potential. The value that machine tools added to these human talents is in the areas of rigidity (constraining the toolpath despite thousands of newtons ( pounds) of force fighting against the constraint), accuracy and precision, efficiency, and
productivity Productivity is the efficiency of production of goods or services expressed by some measure. Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input used in a production proces ...
. With a machine tool, toolpaths that no human muscle could constrain can be constrained; and toolpaths that are technically possible with freehand methods, but would require tremendous time and skill to execute, can instead be executed quickly and easily, even by people with little freehand talent (because the machine takes care of it). The latter aspect of machine tools is often referred to by historians of technology as "building the skill into the tool", in contrast to the toolpath-constraining skill being in the ''person'' who wields the tool. As an example, it is ''physically possible'' to make interchangeable screws, bolts, and nuts entirely with freehand toolpaths. But it is ''economically practical'' to make them only with machine tools. In the 1930s, the U.S. National Bureau of Economic Research (NBER) referenced the definition of a machine tool as "any machine operating by other than hand power which employs a tool to work on metal".. The narrowest colloquial sense of the term reserves it only for machines that perform metal cutting—in other words, the many kinds of onventional machining and
grinding Grind is the cross-sectional shape of a blade. Grind, grinds, or grinding may also refer to: Grinding action * Grinding (abrasive cutting), a method of crafting * Grinding (dance), suggestive club dancing * Grinding (video gaming), repetitive and ...
. These processes are a type of deformation that produces swarf. However, economists use a slightly broader sense that also includes metal deformation of other types that squeeze the metal into shape without cutting off swarf, such as rolling, stamping with dies, shearing,
swaging Swaging () is a forging process in which the dimensions of an item are altered using dies into which the item is forced. Swaging is usually a cold working process, but also may be hot worked. The term swage may apply to the process (verb) or ...
, riveting, and others. Thus presses are usually included in the economic definition of machine tools. For example, this is the breadth of definition used by Max Holland in his history of Burgmaster and Houdaille,. which is also a history of the machine tool industry in general from the 1940s through the 1980s; he was reflecting the sense of the term used by Houdaille itself and other firms in the industry. Many reports on machine tool
export An export in international trade is a good produced in one country that is sold into another country or a service provided in one country for a national or resident of another country. The seller of such goods or the service provider is an ...
and import and similar economic topics use this broader definition. The colloquial sense implying onventionalmetal cutting is also growing obsolete because of changing technology over the decades. The many more recently developed processes labeled "machining", such as electrical discharge machining, electrochemical machining, electron beam machining,
photochemical machining Photochemical machining (PCM), also known as photochemical milling or photo etching, is a chemical milling process used to fabricate sheet metal components using a photoresist and etchants to corrosively machine away selected areas. This process ...
, and ultrasonic machining, or even
plasma cutting Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other c ...
and water jet cutting, are often performed by machines that could most logically be called machine tools. In addition, some of the newly developed
additive manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
processes, which are not about cutting away material but rather about adding it, are done by machines that are likely to end up labeled, in some cases, as machine tools. In fact,
machine tool builder A machine tool builder is a corporation or person that builds machine tools, usually for sale to manufacturers, who use them to manufacture products. A machine tool builder runs a machine factory, which is part of the machine industry. The machin ...
s are already developing machines that include both subtractive and
additive manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
in one work envelope, and retrofits of existing machines are underway. The natural language use of the terms varies, with subtle
connotative A connotation is a commonly understood cultural or emotional association that any given word or phrase carries, in addition to its explicit or literal meaning, which is its denotation. A connotation is frequently described as either positive or ...
boundaries. Many speakers resist using the term "machine tool" to refer to
woodworking machine A Woodworking machine is a machine that is intended to process wood. These machines are usually powered by electric motors and are used extensively in woodworking. Sometimes grinding machines (used for grinding down to smaller pieces) are also cons ...
ry (joiners, table saws, routing stations, and so on), but it is difficult to maintain any true logical dividing line, and therefore many speakers accept a broad definition. It is common to hear machinists refer to their machine tools simply as "machines". Usually the mass noun "machinery" encompasses them, but sometimes it is used to imply only those machines that are being excluded from the definition of "machine tool". This is why the machines in a food-processing plant, such as conveyors, mixers, vessels, dividers, and so on, may be labeled "machinery", while the machines in the factory's tool and die department are instead called "machine tools" in contradistinction. Regarding the 1930s NBER definition quoted above, one could argue that its specificity to metal is obsolete, as it is quite common today for particular lathes, milling machines, and machining centers (definitely machine tools) to work exclusively on plastic cutting jobs throughout their whole working lifespan. Thus the NBER definition above could be expanded to say "which employs a tool to work on metal ''or other materials of high hardness''". And its specificity to "operating by other than hand power" is also problematic, as machine tools can be powered by people if appropriately set up, such as with a treadle (for a lathe) or a hand lever (for a
shaper A shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of ...
). Hand-powered shapers are clearly "the 'same thing' as shapers with electric motors except smaller", and it is trivial to power a micro lathe with a hand-cranked belt pulley instead of an electric motor. Thus one can question whether power source is truly a key distinguishing concept; but for economics purposes, the NBER's definition made sense, because most of the commercial value of the existence of machine tools comes about via those that are powered by electricity, hydraulics, and so on. Such are the vagaries of natural language and controlled vocabulary, both of which have their places in the business world.


History

Forerunners of machine tools included bow drills and potter's wheels, which had existed in ancient Egypt prior to 2500 BC, and lathes, known to have existed in multiple regions of Europe since at least 1000 to 500 BC.. But it was not until the later
Middle Ages In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire ...
and the
Age of Enlightenment The Age of Enlightenment or the Enlightenment; german: Aufklärung, "Enlightenment"; it, L'Illuminismo, "Enlightenment"; pl, Oświecenie, "Enlightenment"; pt, Iluminismo, "Enlightenment"; es, La Ilustración, "Enlightenment" was an intel ...
that the modern concept of a machine tool—a class of machines used as tools in the making of metal parts, and incorporating machine-guided toolpath—began to evolve.
Clockmaker A clockmaker is an artisan who makes and/or repairs clocks. Since almost all clocks are now factory-made, most modern clockmakers only repair clocks. Modern clockmakers may be employed by jewellers, antique shops, and places devoted strictly to ...
s of the Middle Ages and renaissance men such as Leonardo da Vinci helped expand humans' technological milieu toward the preconditions for industrial machine tools. During the 18th and 19th centuries, and even in many cases in the 20th, the builders of machine tools tended to be the same people who would then use them to produce the end products (manufactured goods). However, from these roots also evolved an industry of machine tool builders as we define them today, meaning people who specialize in building machine tools for sale to others. Historians of machine tools often focus on a handful of major industries that most spurred machine tool development. In order of historical emergence, they have been firearms (small arms and
artillery Artillery is a class of heavy military ranged weapons that launch munitions far beyond the range and power of infantry firearms. Early artillery development focused on the ability to breach defensive walls and fortifications during siege ...
);
clocks A clock or a timepiece is a device used to measure and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units such as the day, the lunar month and the ...
; textile machinery; steam engines ( stationary, marine,
rail Rail or rails may refer to: Rail transport *Rail transport and related matters *Rail (rail transport) or railway lines, the running surface of a railway Arts and media Film * ''Rails'' (film), a 1929 Italian film by Mario Camerini * ''Rail'' ( ...
, and otherwise) (the story of how
Watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
's need for an accurate cylinder spurred Boulton's boring machine is discussed by
Roe Roe ( ) or hard roe is the fully ripe internal egg masses in the ovaries, or the released external egg masses, of fish and certain marine animals such as shrimp, scallop, sea urchins and squid. As a seafood, roe is used both as a cooked in ...
); sewing machines; bicycles;
automobile A car or automobile is a motor vehicle with wheels. Most definitions of ''cars'' say that they run primarily on roads, seat one to eight people, have four wheels, and mainly transport people instead of goods. The year 1886 is regarde ...
s; and
aircraft An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engine ...
. Others could be included in this list as well, but they tend to be connected with the root causes already listed. For example, rolling-element bearings are an industry of themselves, but this industry's main drivers of development were the vehicles already listed—trains, bicycles, automobiles, and aircraft; and other industries, such as tractors, farm implements, and tanks, borrowed heavily from those same parent industries. Machine tools filled a need created by textile machinery during the
Industrial Revolution The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
in England in the middle to late 1700s. Until that time, machinery was made mostly from wood, often including gearing and shafts. The increase in
mechanization Mechanization is the process of changing from working largely or exclusively by hand or with animals to doing that work with machinery. In an early engineering text a machine is defined as follows: In some fields, mechanization includes the ...
required more metal parts, which were usually made of
cast iron Cast iron is a class of iron– carbon alloys with a carbon content more than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its color when fractured: white cast iron has carbide impur ...
or
wrought iron Wrought iron is an iron alloy with a very low carbon content (less than 0.08%) in contrast to that of cast iron (2.1% to 4%). It is a semi-fused mass of iron with fibrous slag inclusions (up to 2% by weight), which give it a wood-like "grain" ...
. Cast iron could be cast in molds for larger parts, such as engine cylinders and gears, but was difficult to work with a file and could not be hammered. Red hot wrought iron could be hammered into shapes. Room temperature wrought iron was worked with a file and chisel and could be made into gears and other complex parts; however, hand working lacked precision and was a slow and expensive process. James Watt was unable to have an accurately bored cylinder for his first steam engine, trying for several years until John Wilkinson invented a suitable boring machine in 1774, boring Boulton & Watt's first commercial engine in 1776. The advance in the accuracy of machine tools can be traced to
Henry Maudslay Henry Maudslay ( pronunciation and spelling) (22 August 1771 – 14 February 1831) was an English machine tool innovator, tool and die maker, and inventor. He is considered a founding father of machine tool technology. His inventions were ...
and refined by Joseph Whitworth. That Maudslay had established the manufacture and use of master plane gages in his shop (Maudslay & Field) located on Westminster Road south of the Thames River in London about 1809, was attested to by James Nasmyth who was employed by Maudslay in 1829 and Nasmyth documented their use in his autobiography. The process by which the master plane gages were produced dates back to antiquity but was refined to an unprecedented degree in the Maudslay shop. The process begins with three square plates each given an identification (ex., 1,2 and 3). The first step is to rub plates 1 and 2 together with a marking medium (called bluing today) revealing the high spots which would be removed by hand scraping with a steel scraper, until no irregularities were visible. This would not produce true plane surfaces but a "ball and socket" concave-concave and convex-convex fit, as this mechanical fit, like two perfect planes, can slide over each other and reveal no high spots. The rubbing and marking are repeated after rotating 2 relative to 1 by 90 degrees to eliminate concave-convex "potato-chip" curvature. Next, plate number 3 is compared and scraped to conform to plate number 1 in the same two trials. In this manner plates number 2 and 3 would be identical. Next plates number 2 and 3 would be checked against each other to determine what condition existed, either both plates were "balls" or "sockets" or "chips" or a combination. These would then be scraped until no high spots existed and then compared to plate number 1. Repeating this process of comparing and scraping the three plates could produce plane surfaces accurate to within millionths of an inch (the thickness of the marking medium). The traditional method of producing the surface gages used an abrasive powder rubbed between the plates to remove the high spots, but it was Whitworth who contributed the refinement of replacing the grinding with hand scraping. Sometime after 1825, Whitworth went to work for Maudslay and it was there that Whitworth perfected the hand scraping of master surface plane gages. In his paper presented to the British Association for the Advancement of Science at Glasgow in 1840, Whitworth pointed out the inherent inaccuracy of grinding due to no control and thus unequal distribution of the abrasive material between the plates which would produce uneven removal of material from the plates. With the creation of master plane gages of such high accuracy, all critical components of machine tools (i.e., guiding surfaces such as machine ways) could then be compared against them and scraped to the desired accuracy. The first machine tools offered for sale (i.e., commercially available) were constructed by
Matthew Murray Matthew Murray (1765 – 20 February 1826) was an English steam engine and machine tool manufacturer, who designed and built the first commercially viable steam locomotive, the twin cylinder ''Salamanca'' in 1812. He was an innovative design ...
in England around 1800.. Others, such as
Henry Maudslay Henry Maudslay ( pronunciation and spelling) (22 August 1771 – 14 February 1831) was an English machine tool innovator, tool and die maker, and inventor. He is considered a founding father of machine tool technology. His inventions were ...
,
James Nasmyth James Hall Nasmyth (sometimes spelled Naesmyth, Nasmith, or Nesmyth) (19 August 1808 – 7 May 1890) was a Scottish engineer, philosopher, artist and inventor famous for his development of the steam hammer. He was the co-founder of Nasmyth, ...
, and Joseph Whitworth, soon followed the path of expanding their entrepreneurship from manufactured end products and millwright work into the realm of building machine tools for sale. Important early machine tools included the slide rest lathe,
screw-cutting lathe A screw-cutting lathe is a machine (specifically, a lathe) capable of cutting very accurate screw threads via single-point screw-cutting, which is the process of guiding the linear motion of the tool bit in a precisely known ratio to the rotatin ...
,
turret lathe The turret lathe is a form of metalworking lathe that is used for repetitive production of duplicate parts, which by the nature of their cutting process are usually interchangeable. It evolved from earlier lathes with the addition of the ''turre ...
,
milling machine Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done by varying direction on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of d ...
, pattern tracing lathe,
shaper A shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of ...
, and metal planer, which were all in use before 1840. With these machine tools the decades-old objective of producing interchangeable parts was finally realized. An important early example of something now taken for granted was the standardization of screw fasteners such as nuts and bolts. Before about the beginning of the 19th century, these were used in pairs, and even screws of the same machine were generally not interchangeable. Methods were developed to cut screw thread to a greater precision than that of the feed screw in the lathe being used. This led to the bar length standards of the 19th and early 20th centuries. American production of machine tools was a critical factor in the Allies' victory in World War II. Production of machine tools tripled in the United States in the war. No war was more industrialized than World War II, and it has been written that the war was won as much by machine shops as by machine guns. The production of machine tools is concentrated in about 10 countries worldwide: China, Japan, Germany, Italy, South Korea, Taiwan, Switzerland, US, Austria, Spain and a few others. Machine tool innovation continues in several public and private research centers worldwide.


Drive power sources

“all the turning of the iron for the cotton machinery built by Mr. Slater was done with hand chisels or tools in lathes turned by cranks with hand power”. David Wilkinson
Machine tools can be powered from a variety of sources. Human and animal power (via cranks, treadles, treadmills, or treadwheels) were used in the past, as was water power (via water wheel); however, following the development of high-pressure steam engines in the mid 19th century, factories increasingly used steam power. Factories also used hydraulic and pneumatic power. Many small workshops continued to use water, human and animal power until electrification after 1900. Today most machine tools are powered by electricity; hydraulic and pneumatic power are sometimes used, but this is uncommon.


Automatic control

Machine tools can be operated manually, or under automatic control. Early machines used
flywheel A flywheel is a mechanical device which uses the conservation of angular momentum to store rotational energy; a form of kinetic energy proportional to the product of its moment of inertia and the square of its rotational speed. In particular, as ...
s to stabilize their motion and had complex systems of gears and levers to control the machine and the piece being worked on. Soon after World War II, the numerical control (NC) machine was developed. NC machines used a series of numbers punched on paper tape or
punched card A punched card (also punch card or punched-card) is a piece of stiff paper that holds digital data represented by the presence or absence of holes in predefined positions. Punched cards were once common in data processing applications or to di ...
s to control their motion. In the 1960s, computers were added to give even more flexibility to the process. Such machines became known as computerized numerical control (CNC) machines. NC and CNC machines could precisely repeat sequences over and over, and could produce much more complex pieces than even the most skilled tool operators. Before long, the machines could automatically change the specific cutting and shaping tools that were being used. For example, a drill machine might contain a magazine with a variety of
drill bit Drill bits are cutting tools used in a drill to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order ...
s for producing holes of various sizes. Previously, either machine operators would usually have to manually change the bit or move the work piece to another station to perform these different operations. The next logical step was to combine several different machine tools together, all under computer control. These are known as machining centers, and have dramatically changed the way parts are made.


Examples

Examples of machine tools are: * Broaching machine *
Drill press A drill is a tool used for making round holes or driving fasteners. It is fitted with a bit, either a drill or driverchuck. Hand-operated types are dramatically decreasing in popularity and cordless battery-powered ones proliferating due to i ...
* Gear shaper * Hobbing machine *
Hone Honing is a kind of metalworking. Hone may also refer to: * Hone (name) (incl. Hōne), a list of people with the surname, given name or nickname * Hõne language Hõne is a Jukunoid language spoken in Gombe State and Taraba State, Nigeria ...
* Lathe * Screw machines *
Milling machine Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done by varying direction on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of d ...
*
Shear (sheet metal) There are many types of shears used to shear or cut sheet metal. Types Alligator shear An alligator shear, historically known as a lever shear and sometimes as a crocodile shear, is a metal-cutting shear with a hinged jaw, powered by a flywheel ...
*
Shaper A shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of ...
* Bandsaw Saws *
Planer The term planer may refer to several types of carpentry tools, woodworking machines or metalworking machine tools. *Plane (tool), a hand tool used to produce flat surfaces by shaving the surface of the wood * Thickness planer (North America) or thi ...
* Stewart platform mills *
Grinding machine A grinding machine, often shortened to grinder, is a power tool (or machine tool) used for grinding. It is a type of machining using an abrasive wheel as the cutting tool. Each grain of abrasive on the wheel's surface cuts a small chip from th ...
s * Multitasking machines (MTMs)—CNC machine tools with many axes that combine turning, milling, grinding, and material handling into one highly automated machine tool When fabricating or shaping parts, several techniques are used to remove unwanted metal. Among these are: * Electrical discharge machining * Grinding (abrasive cutting) * Multiple edge cutting tools * Single edge cutting tools Other techniques are used to ''add'' desired material. Devices that fabricate components by selective ''addition'' of material are called rapid prototyping machines.


Machine tool manufacturing industry

The worldwide market for machine tools was approximately $81 billion in production in 2014 according to a survey by market research firm Gardner Research. The largest producer of machine tools was China with $23.8 billion of production followed by Germany and Japan at neck and neck with $12.9 billion and $12.88 billion respectively. South Korea and Italy rounded out the top 5 producers with revenue of $5.6 billion and $5 billion respectively.


See also


References


Bibliography

* ''A history most specifically of Burgmaster, which specialized in turret drills; but in telling Burgmaster's story, and that of its acquirer Houdaille, Holland provides a history of the machine tool industry in general between World War II and the 1980s that ranks with Noble's coverage of the same era (Noble 1984) as a seminal history. Later republished under the title ''From Industry to Alchemy: Burgmaster, a Machine Tool Company''. '' * * . ''The Moore family firm, the Moore Special Tool Company, independently invented the
jig borer The jig borer is a type of machine tool invented at the end of World War I to enable the quick and precise location of hole centers. It was invented independently in Switzerland and the United States. It resembles a specialized species of milling ...
(contemporaneously with its Swiss invention), and Moore's monograph is a seminal classic of the principles of machine tool design and construction that yield the highest possible accuracy and precision in machine tools (second only to that of metrological machines). The Moore firm epitomized the art and science of the tool and die maker.'' * . ''A seminal classic of machine tool history. Extensively cited by later works.'' * * * . Collection of previously published monographs bound as one volume. A collection of seminal classics of machine tool history.


Further reading

* ''A memoir that contains quite a bit of general history of the industry.'' * . ''A monograph with a focus on history, economics, and import and export policy. Original 1976 publication: LCCN 75-046133, .'' * ''One of the most detailed histories of the machine tool industry from the late 18th century through 1932. Not comprehensive in terms of firm names and sales statistics (like Floud focuses on), but extremely detailed in exploring the development and spread of practicable interchangeability, and the thinking behind the intermediate steps. Extensively cited by later works.'' * ''One of the most detailed histories of the machine tool industry from World War II through the early 1980s, relayed in the context of the social impact of evolving automation via NC and CNC.'' * . ''A biography of a machine tool builder that also contains some general history of the industry.'' * * Ryder, Thomas and Son, ''Machines to Make Machines 1865 to 1968'', a centenary booklet, (Derby: Bemrose & Sons, 1968)


External links


Milestones in the History of Machine Tools
{{Authority control Industrial machinery Machines Machining Tools Woodworking