HOME

TheInfoList



OR:

In
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bond
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
'' Gold Book'' definition
''lone (electron) pair''
/ref> and is sometimes called an unshared pair or non-bonding pair. Lone pairs are found in the outermost electron shell of atoms. They can be identified by using a
Lewis structure Lewis structures, also known as Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDS), are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons ...
. Electron pairs are therefore considered lone pairs if two electrons are paired but are not used in chemical bonding. Thus, the number of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s in lone pairs plus the number of electrons in bonds equals the number of valence electrons around an atom. Lone pair is a concept used in valence shell electron pair repulsion theory (VSEPR theory) which explains the shapes of molecules. They are also referred to in the chemistry of Lewis acids and bases. However, not all non-bonding pairs of electrons are considered by chemists to be lone pairs. Examples are the transition metals where the non-bonding pairs do not influence molecular geometry and are said to be stereochemically inactive. In
molecular orbital theory In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. In molecular orbital theory, electrons in a molec ...
(fully delocalized canonical orbitals or localized in some form), the concept of a lone pair is less distinct, as the correspondence between an orbital and components of a Lewis structure is often not straightforward. Nevertheless, occupied non-bonding orbitals (or orbitals of mostly nonbonding character) are frequently identified as lone pairs. A ''single'' lone pair can be found with atoms in the nitrogen group, such as nitrogen in
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous ...
. ''Two'' lone pairs can be found with atoms in the chalcogen group, such as oxygen in water. The halogens can carry ''three'' lone pairs, such as in
hydrogen chloride The compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chlorid ...
. In VSEPR theory the electron pairs on the oxygen atom in water form the vertices of a tetrahedron with the lone pairs on two of the four vertices. The H–O–H bond angle is 104.5°, less than the 109° predicted for a
tetrahedral angle In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
, and this can be explained by a repulsive interaction between the lone pairs. Various computational criteria for the presence of lone pairs have been proposed. While electron density ρ(r) itself generally does not provide useful guidance in this regard, the Laplacian of the electron density is revealing, and one criterion for the location of the lone pair is where ''L''(r) ''= –''∇2ρ(r) is a local maximum. The minima of the electrostatic potential ''V''(r) is another proposed criterion. Yet another considers the electron localization function (ELF).


Angle changes

The pairs often exhibit a negative polar character with their high charge density and are located closer to the
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
on average compared to the bonding pair of electrons. The presence of a lone pair decreases the bond angle between the bonding pair of electrons, due to their high electric charge, which causes great repulsion between the electrons. They are also involved in the formation of a
dative bond In coordination chemistry, a coordinate covalent bond, also known as a dative bond, dipolar bond, or coordinate bond is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal ...
. For example, the creation of the
hydronium In chemistry, hydronium (hydroxonium in traditional British English) is the common name for the aqueous cation , the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid ...
(H3O+) ion occurs when acids are dissolved in water and is due to the
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
atom donating a lone pair to the
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
ion. This can be seen more clearly when looked at it in two more common
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
s. For example, in
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
(CO2), the oxygen atoms are on opposite sides of the carbon ( linear molecular geometry), whereas in
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
(H2O) the angle between the hydrogen atoms is 104.5° (
bent molecular geometry In chemistry, molecules with a non-collinear arrangement of two adjacent bonds have bent molecular geometry, also known as angular or V-shaped. Certain atoms, such as oxygen, will almost always set their two (or more) covalent bonds in non-colline ...
). The repulsive force of the oxygen atom's lone pairs pushes the hydrogens further apart, until the forces of all electrons on the hydrogen atom are in equilibrium. This is an illustration of the VSEPR theory.


Dipole moments

Lone pairs can contribute to a molecule's dipole moment. NH3 has a dipole moment of 1.42 D. As the electronegativity of nitrogen (3.04) is greater than that of hydrogen (2.2) the result is that the N-H bonds are polar with a net negative charge on the nitrogen atom and a smaller net positive charge on the hydrogen atoms. There is also a dipole associated with the lone pair and this reinforces the contribution made by the polar covalent N-H bonds to ammonia's dipole moment. In contrast to NH3, NF3 has a much lower dipole moment of 0.234 D. Fluorine is more
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
than nitrogen and the polarity of the N-F bonds is opposite to that of the N-H bonds in ammonia, so that the dipole due to the lone pair opposes the N-F bond dipoles, resulting in a low molecular dipole moment.


Stereogenic lone pairs

A lone pair can contribute to the existence of chirality in a molecule, when three other groups attached to an atom all differ. The effect is seen in certain
amine In chemistry, amines (, ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (), wherein one or more hydrogen atoms have been replaced by a substituent ...
s,
phosphine Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting ...
s,
sulfonium In organic chemistry, a sulfonium ion, also known as sulphonium ion or sulfanium ion, is a positively-charged ion (a "cation") featuring three organic substituents attached to sulfur. These organosulfur compounds have the formula . Together wi ...
and
oxonium ion In chemistry, an oxonium ion is any cation containing an oxygen atom that has three bonds and 1+ formal charge. The simplest oxonium ion is the hydronium ion (). Alkyloxonium Hydronium is one of a series of oxonium ions with the formula R''n'' ...
s, sulfoxides, and even carbanions. The resolution of enantiomers where the stereogenic center is an amine is usually precluded because the
energy barrier In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
for
nitrogen inversion In chemistry, pyramidal inversion (also umbrella inversion) is a fluxional process in compounds with a pyramidal molecule, such as ammonia (NH3) "turns inside out". It is a rapid oscillation of the atom and substituents, the molecule or ion pass ...
at the stereo center is low, which allow the two stereoisomers to rapidly interconvert at room temperature. As a result, such chiral amines cannot be resolved, unless the amine's groups are constrained in a cyclic structure (such as in
Tröger's base Tröger's base is a white solid tetracyclic organic compound. structure and formula of (CH3C6H3NCH2)2CH2. Tröger's base and its analogs are soluble in various organic solvents and strong acidic aqueous solutions due to their protonation. History ...
).


Unusual lone pairs

A stereochemically active lone pair is also expected for divalent
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
and tin ions due to their formal electronic configuration of n''s''2. In the solid state this results in the distorted metal coordination observed in the tetragonal
litharge Litharge (from Greek lithargyros, lithos (stone) + argyros (silver) ''λιθάργυρος'') is one of the natural mineral forms of lead(II) oxide, PbO. Litharge is a secondary mineral which forms from the oxidation of galena ores. It forms as co ...
structure adopted by both PbO and SnO. The formation of these heavy metal n''s''2 lone pairs which was previously attributed to intra-atomic
hybridization Hybridization (or hybridisation) may refer to: *Hybridization (biology), the process of combining different varieties of organisms to create a hybrid *Orbital hybridization, in chemistry, the mixing of atomic orbitals into new hybrid orbitals *Nu ...
of the metal s and p states has recently been shown to have a strong anion dependence. This dependence on the electronic states of the anion can explain why some divalent lead and tin materials such as PbS and SnTe show no stereochemical evidence of the lone pair and adopt the symmetric rocksalt crystal structure. In molecular systems the lone pair can also result in a distortion in the coordination of ligands around the metal ion. The lone-pair effect of lead can be observed in supramolecular complexes of lead(II) nitrate, and in 2007 a study linked the lone pair to lead poisoning. Lead ions can replace the native metal ions in several key enzymes, such as zinc cations in the ALAD enzyme, which is also known as porphobilinogen synthase, and is important in the synthesis of heme, a key component of the oxygen-carrying molecule
hemoglobin Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythroc ...
. This inhibition of heme synthesis appears to be the molecular basis of lead poisoning (also called "saturnism" or "plumbism"). Computational experiments reveal that although the coordination number does not change upon substitution in calcium-binding proteins, the introduction of lead distorts the way the ligands organize themselves to accommodate such an emerging lone pair: consequently, these proteins are perturbed. This lone-pair effect becomes dramatic for zinc-binding proteins, such as the above-mentioned porphobilinogen synthase, as the natural substrate cannot bind anymore – in those cases the protein is inhibited. In Group 14 elements (the carbon group), lone pairs can manifest themselves by shortening or lengthening single bond ( bond order 1) lengths, as well as in the effective order of
triple bond A triple bond in chemistry is a chemical bond between two atoms involving six bonding electrons instead of the usual two in a covalent single bond. Triple bonds are stronger than the equivalent single bonds or double bonds, with a bond order o ...
s as well. The familiar alkynes have a carbon-carbon triple bond ( bond order 3) and a linear geometry of 180° bond angles (figure A in reference ). However, further down in the group (
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
,
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors ...
, and tin), formal triple bonds have an effective bond order 2 with one lone pair (figure B) and trans-bent geometries. In
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
, the effective bond order is reduced even further to a single bond, with two lone pairs for each lead atom (figure ''C''). In the organogermanium compound (''Scheme 1'' in the reference), the effective bond order is also 1, with complexation of the acidic isonitrile (or ''isocyanide'') C-N groups, based on interaction with germanium's empty 4p orbital.


Different descriptions for multiple lone pairs

In elementary chemistry courses, the lone pairs of water are described as "rabbit ears": two equivalent electron pairs of approximately sp3 hybridization, while the HOH bond angle is 104.5°, slightly smaller than the ideal tetrahedral angle of arccos(–1/3) ≈ 109.47°. The smaller bond angle is rationalized by VSEPR theory by ascribing a larger space requirement for the two identical lone pairs compared to the two bonding pairs. In more advanced courses, an alternative explanation for this phenomenon considers the greater stability of orbitals with excess s character using the theory of
isovalent hybridization In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d ...
, in which bonds and lone pairs can be constructed with sp''x'' hybrids wherein nonintegral values of ''x'' are allowed, so long as the total amount of s and p character is conserved (one s and three p orbitals in the case of second-row p-block elements). To determine the hybridization of oxygen orbitals used to form the bonding pairs and lone pairs of water in this picture, we use the formula 1 + ''x'' cos θ = 0, which relates bond angle θ with the hybridization index ''x''. According to this formula, the O–H bonds are considered to be constructed from O bonding orbitals of ~sp4.0 hybridization (~80% p character, ~20% s character), which leaves behind O lone pairs orbitals of ~sp2.3 hybridization (~70% p character, ~30% s character). These deviations from idealized sp3 hybridization for tetrahedral geometry are consistent with Bent's rule: lone pairs localize more electron density closer to the central atom compared to bonding pairs; hence, the use of orbitals with excess s character to form lone pairs (and, consequently, those with excess p character to form bonding pairs) is energetically favorable. However, theoreticians often prefer an alternative description of water that separates the lone pairs of water according to symmetry with respect to the molecular plane. In this model, there are two energetically and geometrically distinct lone pairs of water possessing different symmetry: one (σ) in-plane and symmetric with respect to the molecular plane and the other (π) perpendicular and anti-symmetric with respect to the molecular plane. The σ-symmetry lone pair (σ(out)) is formed from a hybrid orbital that mixes 2s and 2p character, while the π-symmetry lone pair (p) is of exclusive 2p orbital parentage. The s character rich O σ(out) lone pair orbital (also notated ''n''O(σ)) is an ~sp0.7 hybrid (~40% p character, 60% s character), while the p lone pair orbital (also notated ''n''O(π)) consists of 100% p character. Both models are of value and represent the same total electron density, with the orbitals related by a unitary transformation. In this case, we can construct the two equivalent lone pair hybrid orbitals ''h'' and ''h''' by taking linear combinations ''h'' = ''c''1σ(out) + ''c''2p and ''h''' = ''c''1σ(out) – ''c''2p for an appropriate choice of coefficients ''c''1 and ''c''2. For chemical and physical properties of water that depend on the ''overall'' electron distribution of the molecule, the use of ''h'' and ''h''' is just as valid as the use of σ(out) and p. In some cases, such a view is intuitively useful. For example, the stereoelectronic requirement for the anomeric effect can be rationalized using equivalent lone pairs, since it is the ''overall'' donation of electron density into the antibonding orbital that matters. An alternative treatment using σ/π separated lone pairs is also valid, but it requires striking a balance between maximizing ''n''O(π)-σ* overlap (maximum at 90° dihedral angle) and ''n''O(σ)-σ* overlap (maximum at 0° dihedral angle), a compromise that leads to the conclusion that a ''gauche'' conformation (60° dihedral angle) is most favorable, the same conclusion that the equivalent lone pairs model rationalizes in a much more straightforward manner. Similarly, the hydrogen bonds of water form along the directions of the "rabbit ears" lone pairs, as a reflection of the increased availability of electrons in these regions. This view is supported computationally. However, because only the symmetry-adapted canonical orbitals have physically meaningful energies, phenomena that have to do with the energies of ''individual'' orbitals, such as photochemical reactivity or photoelectron spectroscopy, are most readily explained using σ and π lone pairs that respect the molecular symmetry. Because of the popularity of VSEPR theory, the treatment of the water lone pairs as equivalent is prevalent in introductory chemistry courses, and many practicing chemists continue to regard it as a useful model. A similar situation arises when describing the two lone pairs on the carbonyl oxygen of a ketone. However, the question of whether it is conceptually useful to derive equivalent orbitals from symmetry-adapted ones, from the standpoint of bonding theory and pedagogy, is still a controversial one, with recent (2014 and 2015) articles opposing and supporting the practice.


See also

*
Coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as '' ligands'' or complexing agents. M ...
* HOMO and LUMO (highest occupied molecular orbital and lowest unoccupied molecular orbital) * Inert-pair effect *
Ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
*
Shared pair A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between ato ...


References

{{Chemical bonding theory Chemical bonding