HOME

TheInfoList



OR:

Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
include rectilinear motion, the linear relationship of voltage and current in an electrical conductor ( Ohm's law), and the relationship of
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
and weight. By contrast, more complicated relationships are ''
nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many oth ...
''. Generalized for functions in more than one
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
, linearity means the property of a function of being compatible with addition and scaling, also known as the superposition principle. The word linear comes from
Latin Latin (, or , ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through ...
''linearis'', "pertaining to or resembling a line".


In mathematics

In mathematics, a linear map or linear function ''f''(''x'') is a function that satisfies the two properties: * Additivity: . *
Homogeneity Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, size, ...
of degree 1: for all α. These properties are known as the superposition principle. In this definition, ''x'' is not necessarily a
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
, but can in general be an element of any vector space. A more special definition of linear function, not coinciding with the definition of linear map, is used in elementary mathematics (see below). Additivity alone implies homogeneity for rational α, since f(x+x)=f(x)+f(x) implies f(nx)=n f(x) for any
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
''n'' by
mathematical induction Mathematical induction is a method for proving that a statement ''P''(''n'') is true for every natural number ''n'', that is, that the infinitely many cases ''P''(0), ''P''(1), ''P''(2), ''P''(3), ...  all hold. Informal metaphors help ...
, and then n f(x) = f(nx)=f(m\tfracx)= m f(\tfracx) implies f(\tfracx) = \tfrac f(x). The
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
of the rational numbers in the reals implies that any additive continuous function is homogeneous for any real number α, and is therefore linear. The concept of linearity can be extended to linear operators. Important examples of linear operators include the
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
considered as a differential operator, and other operators constructed from it, such as del and the Laplacian. When a
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, ...
can be expressed in linear form, it can generally be solved by breaking the equation up into smaller pieces, solving each of those pieces, and summing the solutions.
Linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrice ...
is the branch of mathematics concerned with the study of vectors, vector spaces (also called 'linear spaces'), linear transformations (also called 'linear maps'), and systems of linear equations. For a description of linear and nonlinear equations, see '' linear equation''.


Linear polynomials

In a different usage to the above definition, a
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
of degree 1 is said to be linear, because the graph of a function of that form is a straight line. Over the reals, a linear equation is one of the forms: :f(x) = m x + b\ where ''m'' is often called the
slope In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is use ...
or
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
; ''b'' the y-intercept, which gives the point of intersection between the graph of the function and the ''y''-axis. Note that this usage of the term ''linear'' is not the same as in the section above, because linear polynomials over the real numbers do not in general satisfy either additivity or homogeneity. In fact, they do so
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bic ...
. Hence, if , the function is often called an affine function (see in greater generality affine transformation).


Boolean functions

In
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas i ...
, a linear function is a function f for which there exist a_0, a_1, \ldots, a_n \in \ such that :f(b_1, \ldots, b_n) = a_0 \oplus (a_1 \land b_1) \oplus \cdots \oplus (a_n \land b_n), where b_1, \ldots, b_n \in \. Note that if a_0 = 1, the above function is considered affine in linear algebra (i.e. not linear). A Boolean function is linear if one of the following holds for the function's
truth table A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arg ...
: # In every row in which the truth value of the function is T, there are an odd number of Ts assigned to the arguments, and in every row in which the function is F there is an even number of Ts assigned to arguments. Specifically, , and these functions correspond to linear maps over the Boolean vector space. # In every row in which the value of the function is T, there is an even number of Ts assigned to the arguments of the function; and in every row in which the truth value of the function is F, there are an odd number of Ts assigned to arguments. In this case, . Another way to express this is that each variable always makes a difference in the truth value of the operation or it never makes a difference. Negation, Logical biconditional, exclusive or, tautology, and contradiction are linear functions.


Physics

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, ''linearity'' is a property of the differential equations governing many systems; for instance, the
Maxwell equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. Th ...
or the diffusion equation. Linearity of a homogenous
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, ...
means that if two functions ''f'' and ''g'' are solutions of the equation, then any linear combination is, too. In instrumentation, linearity means that a given change in an input variable gives the same change in the output of the measurement apparatus: this is highly desirable in scientific work. In general, instruments are close to linear over a certain range, and most useful within that range. In contrast, human senses are highly nonlinear: for instance, the brain completely ignores incoming light unless it exceeds a certain absolute threshold number of photons.


Electronics

In
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
, the linear operating region of a device, for example a transistor, is where an output dependent variable (such as the transistor collector current) is directly proportional to an input dependent variable (such as the base current). This ensures that an analog output is an accurate representation of an input, typically with higher amplitude (amplified). A typical example of linear equipment is a high fidelity audio amplifier, which must amplify a signal without changing its waveform. Others are
linear filter Linear filters process time-varying input signals to produce output signals, subject to the constraint of linearity. In most cases these linear filters are also time invariant (or shift invariant) in which case they can be analyzed exactly using ...
s, and
linear amplifier A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency (RF) power amplifier, some of which have output power mea ...
s in general. In most scientific and technological, as distinct from mathematical, applications, something may be described as linear if the characteristic is approximately but not exactly a straight line; and linearity may be valid only within a certain operating region—for example, a high-fidelity amplifier may distort a small signal, but sufficiently little to be acceptable (acceptable but imperfect linearity); and may distort very badly if the input exceeds a certain value.


Integral linearity

For an electronic device (or other physical device) that converts a quantity to another quantity, Bertram S. Kolts writes:
There are three basic definitions for integral linearity in common use: independent linearity, zero-based linearity, and terminal, or end-point, linearity. In each case, linearity defines how well the device's actual performance across a specified operating range approximates a straight line. Linearity is usually measured in terms of a deviation, or non-linearity, from an ideal straight line and it is typically expressed in terms of percent of full scale, or in ppm (parts per million) of full scale. Typically, the straight line is obtained by performing a least-squares fit of the data. The three definitions vary in the manner in which the straight line is positioned relative to the actual device's performance. Also, all three of these definitions ignore any gain, or offset errors that may be present in the actual device's performance characteristics.


Military tactical formations

In military tactical formations, "linear formations" were adapted starting from phalanx-like formations of pike protected by handgunners, towards shallow formations of handgunners protected by progressively fewer pikes. This kind of formation got progressively thinner until its extreme in the age of Wellington's ' Thin Red Line'. It was eventually replaced by skirmish order when the invention of the
breech-loading A breechloader is a firearm in which the user loads the ammunition ( cartridge or shell) via the rear (breech) end of its barrel, as opposed to a muzzleloader, which loads ammunition via the front ( muzzle). Modern firearms are generally breec ...
rifle allowed soldiers to move and fire in small, mobile units, unsupported by large-scale formations of any shape.


Art

Linear is one of the five categories proposed by Swiss art historian Heinrich Wölfflin to distinguish "Classic", or Renaissance art, from the Baroque. According to Wölfflin, painters of the fifteenth and early sixteenth centuries (
Leonardo da Vinci Leonardo di ser Piero da Vinci (15 April 14522 May 1519) was an Italian polymath of the High Renaissance who was active as a painter, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially rested on ...
,
Raphael Raffaello Sanzio da Urbino, better known as Raphael (; or ; March 28 or April 6, 1483April 6, 1520), was an Italian painter and architect of the High Renaissance. His work is admired for its clarity of form, ease of composition, and visual ...
or Albrecht Dürer) are more linear than "
painterly Painterliness is a concept based on ''german: malerisch'' ('painterly'), a word popularized by Swiss art historian Heinrich Wölfflin (1864–1945) to help focus, enrich and standardize the terms being used by art historians of his time to ch ...
" Baroque painters of the seventeenth century (
Peter Paul Rubens Sir Peter Paul Rubens (; ; 28 June 1577 – 30 May 1640) was a Flemish artist and diplomat from the Duchy of Brabant in the Southern Netherlands (modern-day Belgium). He is considered the most influential artist of the Flemish Baroque tradit ...
, Rembrandt, and Velázquez) because they primarily use outline to create shape. Linearity in art can also be referenced in
digital art Digital art refers to any artistic work or practice that uses digital technology as part of the creative or presentation process, or more specifically computational art that uses and engages with digital media. Since the 1960s, various name ...
. For example,
hypertext fiction Hypertext fiction is a genre of electronic literature, characterized by the use of hypertext links that provide a new context for non-linearity in literature and reader interaction. The reader typically chooses links to move from one node of text ...
can be an example of nonlinear narrative, but there are also websites designed to go in a specified, organized manner, following a linear path.


Music

In music the linear aspect is succession, either intervals or melody, as opposed to simultaneity or the vertical aspect.


In statistics


See also

* Linear actuator * Linear element *
Linear foot The foot ( feet), standard symbol: ft, is a Units of measurement, unit of length in the imperial units, British imperial and United States customary units, United States customary systems of metrology, measurement. The Prime (symbol), ...
*
Linear system In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction ...
* Linear programming * Linear differential equation * Bilinear * Multilinear * Linear motor * Linear A and Linear B scripts. * Linear interpolation


References


External links

*{{wiktionary-inline Elementary algebra Physical phenomena Broad-concept articles