HOME

TheInfoList



OR:

In neutral or
absolute geometry Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates, but since these are not suf ...
, and in
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
, there may be many lines parallel to a given line l through a point P not on line R; however, in the plane, two parallels may be closer to l than all others (one in each direction of R). Thus it is useful to make a new definition concerning parallels in neutral geometry. If there are closest parallels to a given line they are known as the limiting parallel, asymptotic parallel or horoparallel (horo from el, ὅριον — border). For rays, the relation of limiting parallel is an equivalence relation, which includes the equivalence relation of being coterminal. If, in a
hyperbolic triangle In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called ''sides'' or ''edges'' and three points called ''angles'' or ''vertices''. Just as in the Euclidean case, three poi ...
, the pairs of sides are limiting parallel, then the triangle is an
ideal triangle In hyperbolic geometry an ideal triangle is a hyperbolic triangle whose three vertices all are ideal points. Ideal triangles are also sometimes called ''triply asymptotic triangles'' or ''trebly asymptotic triangles''. The vertices are sometime ...
.


Definition

A ray Aa is a limiting parallel to a ray Bb if they are
coterminal In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
or if they lie on distinct lines not equal to the line AB, they do not meet, and every ray in the interior of the angle BAa meets the ray Bb.


Properties

Distinct lines carrying limiting parallel rays do not meet.


Proof

Suppose that the lines carrying distinct parallel rays met. By definition they cannot meet on the side of AB which either a is on. Then they must meet on the side of AB opposite to a, call this point C. Thus \angle CAB + \angle CBA < 2 \text \Rightarrow \angle aAB + \angle bBA > 2 \text{ right angles} . Contradiction.


See also

*
horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
, In
Hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
whose normals are limiting parallels *
angle of parallelism In hyperbolic geometry, the angle of parallelism \Pi(a) , is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length ''a'' between the right angle an ...


References

Non-Euclidean geometry Hyperbolic geometry