HOME

TheInfoList



OR:

__notoc__ In
physical cosmology Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f ...
, leptogenesis is the generic term for hypothetical physical processes that produced an
asymmetry Asymmetry is the absence of, or a violation of, symmetry (the property of an object being invariant to a transformation, such as reflection). Symmetry is an important property of both physical and abstract systems and it may be displayed in pr ...
between
leptons In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and ne ...
and antileptons in the very early universe, resulting in the present-day dominance of leptons over antileptons. In the currently accepted
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
,
lepton number In particle physics, lepton number (historically also called lepton charge) is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number ...
is nearly conserved at temperatures below the TeV scale, but tunneling processes can change this number; at higher temperature it may change through interactions with
sphaleron A sphaleron ( el, σφαλερός "slippery") is a static (time-independent) solution to the electroweak field equations of the Standard Model of particle physics, and is involved in certain hypothetical processes that violate baryon and lepto ...
s, particle-like entities.Kuzmin, V. A., Rubakov, V. A., & Shaposhnikov, M. E. (1985). On anomalous electroweak baryon-number non-conservation in the early universe. Physics Letters B, 155(1-2), 36-42. In both cases, the process involved is related to the
weak nuclear force In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, ...
, and is an example of chiral anomaly. Such processes could have hypothetically created leptons in the early universe. In these processes
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifi ...
number is also non-conserved, and thus baryons should have been created along with leptons. Such non-conservation of baryon number is indeed assumed to have happened in the early universe, and is known as
baryogenesis In physical cosmology, baryogenesis (also known as baryosynthesis) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter (baryons) and antimatter (an ...
. However, in some theoretical models, it is suggested that leptogenesis also occurred prior to baryogenesis; thus the term leptogenesis is often used to imply the non-conservation of leptons without corresponding non-conservation of baryons. In the standard model, the difference between the lepton number and the baryon number is precisely conserved, so that leptogenesis without baryogenesis is impossible. Thus such leptogenesis implies extensions to the standard model. The lepton and baryon asymmetries affect the much better understood
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) ...
at later times, during which light
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in ...
began to form. Successful synthesis of the light elements requires that there be an imbalance in the number of baryons and antibaryons to one part in a billion when the universe is a few minutes old. An asymmetry in the number of leptons and antileptons is not mandatory for Big Bang nucleosynthesis. However, charge conservation suggests that any asymmetry in the charged leptons and antileptons (
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s,
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As ...
s and tau particles) should be of the same order of magnitude as the baryon asymmetry. Observations of the primordial
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consis ...
abundance place an upper limit on any lepton asymmetry residing in the neutrino sector, which is not very stringent. Leptogenesis theories employ sub-disciplines of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which re ...
such as
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
, and
statistical physics Statistical physics is a branch of physics that evolved from a foundation of statistical mechanics, which uses methods of probability theory and statistics, and particularly the mathematical tools for dealing with large populations and approxim ...
, to describe such possible mechanisms. Baryogenesis, the generation of a baryon–antibaryon asymmetry, and leptogenesis can be connected by processes that convert
baryon number In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as ::B = \frac\left(n_\text - n_\bar\right), where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Bary ...
and
lepton number In particle physics, lepton number (historically also called lepton charge) is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number ...
into each other. The (non-perturbative) quantum
Adler–Bell–Jackiw anomaly In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have mor ...
can result in
sphaleron A sphaleron ( el, σφαλερός "slippery") is a static (time-independent) solution to the electroweak field equations of the Standard Model of particle physics, and is involved in certain hypothetical processes that violate baryon and lepto ...
s, which can convert leptons into baryons and ''vice versa''. Thus, the Standard Model is in principle able to provide a mechanism to create baryons and leptons. A simple modification of the Standard Model that is instead able to realize the program of Sakharov is the one suggested by M. Fukugita and T. Yanagida. The Standard Model is extended by adding right-handed neutrinos, permitting implementation of the see-saw mechanism and providing the neutrinos with mass. At the same time, the extended model is able to spontaneously generate leptons from the decays of right-handed neutrinos. Finally, the sphalerons are able to convert the spontaneously generated lepton asymmetry into the observed baryonic asymmetry. Due to its popularity, this entire process is sometimes referred to simply as leptogenesis.


See also

*


References

{{reflist


Further reading


Leptogenesis
Wilfried Buchmüller,
Scholarpedia ''Scholarpedia'' is an English-language wiki-based online encyclopedia with features commonly associated with open-access online academic journals, which aims to have quality content in science and medicine. ''Scholarpedia'' articles are written ...
, 9(3):11471. doi:10.4249/scholarpedia.11471


External links


Planck satellite cosmic recipe
Physical cosmology Particle physics