HOME

TheInfoList



OR:

In
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of th ...
, an isothermal process is a type of thermodynamic process in which the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
''T'' of a system remains constant: Δ''T'' = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
exchange (see quasi-equilibrium). In contrast, an ''
adiabatic process In thermodynamics, an adiabatic process (Greek: ''adiábatos'', "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal proces ...
'' is where a system exchanges no heat with its
surroundings Surroundings are the area around a given physical or geographical point or place. The exact definition depends on the field. Surroundings can also be used in geography (when it is more precisely known as vicinity, or vicinage) and mathematics, ...
(''Q'' = 0). Simply, we can say that in an isothermal process * T = \text * \Delta T = 0 * dT = 0 * For
ideal gases An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
only, internal energy \Delta U = 0 while in adiabatic processes: * Q = 0.


Etymology

The adjective "isothermal" is derived from the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
words "ἴσος" ("isos") meaning "equal" and "θέρμη" ("therme") meaning "heat".


Examples

Isothermal processes can occur in any kind of system that has some means of regulating the temperature, including highly structured
machines A machine is a physical system using power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecul ...
, and even living cells. Some parts of the cycles of some heat engines are carried out isothermally (for example, in the Carnot cycle). In the thermodynamic analysis of chemical reactions, it is usual to first analyze what happens under isothermal conditions and then consider the effect of temperature.
Phase changes In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of ...
, such as melting or evaporation, are also isothermal processes when, as is usually the case, they occur at constant pressure. Isothermal processes are often used as a starting point in analyzing more complex, non-isothermal processes. Isothermal processes are of special interest for ideal gases. This is a consequence of Joule's second law which states that the internal energy of a fixed amount of an ideal gas depends only on its temperature. Thus, in an isothermal process the internal energy of an ideal gas is constant. This is a result of the fact that in an ideal gas there are no
intermolecular forces An intermolecular force (IMF) (or secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. a ...
. Note that this is true only for ideal gases; the internal energy depends on pressure as well as on temperature for liquids, solids, and real gases. In the isothermal compression of a gas there is work done on the system to decrease the volume and increase the pressure. Doing work on the gas increases the internal energy and will tend to increase the temperature. To maintain the constant temperature energy must leave the system as heat and enter the environment. If the gas is ideal, the amount of energy entering the environment is equal to the work done on the gas, because internal energy does not change. For isothermal expansion, the energy supplied to the system does work on the surroundings. In either case, with the aid of a suitable linkage the change in gas volume can perform useful mechanical work. For details of the calculations, see calculation of work. For an
adiabatic process In thermodynamics, an adiabatic process (Greek: ''adiábatos'', "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal proces ...
, in which no heat flows into or out of the gas because its container is well insulated, ''Q'' = 0. If there is also no work done, i.e. a
free expansion Free may refer to: Concept * Freedom, having the ability to do something, without having to obey anyone/anything * Freethought, a position that beliefs should be formed only on the basis of logic, reason, and empiricism * Emancipate, to procur ...
, there is no change in internal energy. For an ideal gas, this means that the process is also isothermal. Thus, specifying that a process is isothermal is not sufficient to specify a unique process.


Details for an ideal gas

For the special case of a gas to which
Boyle's law Boyle's law, also referred to as the Boyle–Mariotte law, or Mariotte's law (especially in France), is an experimental gas law that describes the relationship between pressure and volume of a confined gas. Boyle's law has been stated as: The ...
applies, the product ''pV'' (''p'' for gas pressure and ''V'' for gas volume) is a constant if the gas is kept at isothermal conditions. The value of the constant is ''nRT'', where ''n'' is the number of
moles Moles can refer to: * Moles de Xert, a mountain range in the Baix Maestrat comarca, Valencian Community, Spain * The Moles (Australian band) *The Moles, alter ego of Scottish band Simon Dupree and the Big Sound People *Abraham Moles, French engin ...
of the present gas and ''R'' is the ideal gas constant. In other words, the ideal gas law ''pV'' = ''nRT'' applies. Therefore: : p = = holds. The family of curves generated by this equation is shown in the graph in Figure 1. Each curve is called an isotherm, meaning a curve at a same temperature ''T''. Such graphs are termed
indicator diagram An indicator diagram is a chart used to measure the thermal, or cylinder, performance of reciprocating steam and internal combustion engines and compressors. An indicator chart records the pressure in the cylinder versus the volume swept by the ...
s and were first used by James Watt and others to monitor the efficiency of engines. The temperature corresponding to each curve in the figure increases from the lower left to the upper right.


Calculation of work

In thermodynamics, the reversible work involved when a gas changes from state ''A'' to state ''B'' is :W_ = -\int_^p\,dV where ''p'' for gas pressure and ''V'' for gas volume. For an isothermal (constant temperature ''T''), reversible process, this integral equals the area under the relevant PV (pressure-volume) isotherm, and is indicated in purple in Figure 2 for an ideal gas. Again, ''p'' =  applies and with ''T'' being constant (as this is an isothermal process), the expression for work becomes: :W_ = -\int_^p\,dV = -\int_^\fracdV = -nRT\int_^\fracdV = -nRT\ln In
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
convention, work is defined as work on a system by its surroundings. If, for example, the system is compressed, then the work is done on the system by the surrounding so the work is positive and the internal energy of the system increases. Conversely, if the system expands (i.e., system surrounding expansion, so free expansions not the case), then the work is negative as the system does work on the surroundings and the internal energy of the system decreases. It is also worth noting that for ideal gases, if the temperature is held constant, the internal energy of the system ''U'' also is constant, and so Δ''U'' = 0. Since the
First Law of Thermodynamics The first law of thermodynamics is a formulation of the law of conservation of energy, adapted for thermodynamic processes. It distinguishes in principle two forms of energy transfer, heat and thermodynamic work for a system of a constant amou ...
states that Δ''U'' = ''Q'' + ''W'' in
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
convention, it follows that ''Q'' = −''W'' for the isothermal compression or expansion of ideal gases.


Example of an isothermal process

The reversible expansion of an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
can be used as an example of work produced by an isothermal process. Of particular interest is the extent to which heat is converted to usable work, and the relationship between the confining force and the extent of expansion. During isothermal expansion of an ideal gas, both and change along an isotherm with a constant product (i.e., constant ''T''). Consider a working gas in a cylindrical chamber 1 m high and 1 m2 area (so 1m3 volume) at 400 K in static equilibrium. The
surroundings Surroundings are the area around a given physical or geographical point or place. The exact definition depends on the field. Surroundings can also be used in geography (when it is more precisely known as vicinity, or vicinage) and mathematics, ...
consist of air at 300 K and 1 atm pressure (designated as ). The working gas is confined by a piston connected to a mechanical device that exerts a force sufficient to create a working gas pressure of 2 atm (state ). For any change in state that causes a force decrease, the gas will expand and perform work on the surroundings. Isothermal expansion continues as long as the applied force decreases and appropriate heat is added to keep = 2 tm·m3(= 2 atm × 1 m3). The expansion is said to be internally reversible if the piston motion is sufficiently slow such that at each instant during the expansion the gas temperature and pressure is uniform and conform to the ideal gas law. Figure 3 shows the relationship for = 2 tm·m3for isothermal expansion from 2 atm (state ) to 1 atm (state ). The work done (designated W_) has two components. First, ''expansion'' work against the surrounding atmosphere pressure (designated as ), and second, usable ''mechanical'' work (designated as ). The output here could be movement of the piston used to turn a crank-arm, which would then turn a pulley capable of lifting water out of flooded salt mines. :W_ = -p\,V\left(\ln\frac\right) = -W_ -W_ The system attains state ( = 2 tm·m3with = 1 atm and = 2 m3) when the applied force reaches zero. At that point, W_ equals –140.5 kJ, and is –101.3 kJ. By difference, = –39.1 kJ, which is 27.9% of the heat supplied to the process (- 39.1 kJ / - 140.5 kJ). This is the maximum amount of usable mechanical work obtainable from the process at the stated conditions. The percentage of is a function of and , and approaches 100% as approaches zero. To pursue the nature of isothermal expansion further, note the red line on Figure 3. The fixed value of causes an exponential increase in piston rise vs. pressure decrease. For example, a pressure decrease from 2 to 0.6969 atm causes a piston rise of 0.0526 m. In comparison, a pressure decrease from 0.39 to 1 atm causes a piston rise of 0.418 m.


Entropy changes

Isothermal processes are especially convenient for calculating changes in entropy since, in this case, the formula for the entropy change, Δ''S'', is simply :\Delta S = \frac where ''Q''rev is the heat transferred (internally reversible) to the system and ''T'' is absolute temperature. This formula is valid only for a hypothetical reversible process; that is, a process in which equilibrium is maintained at all times. A simple example is an equilibrium phase transition (such as melting or evaporation) taking place at constant temperature and pressure. For a phase transition at constant pressure, the heat transferred to the system is equal to the enthalpy of transformation, Δ''H''tr, thus ''Q'' = Δ''H''tr. At any given pressure, there will be a transition temperature, ''T''tr, for which the two phases are in equilibrium (for example, the normal boiling point for vaporization of a liquid at one atmosphere pressure). If the transition takes place under such equilibrium conditions, the formula above may be used to directly calculate the entropy change :\Delta S_\text = \frac. Another example is the reversible isothermal expansion (or compression) of an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
from an initial volume ''V''A and pressure ''P''A to a final volume ''V''B and pressure ''P''B. As shown in Calculation of work, the heat transferred to the gas is :Q = -W = n R T \ln. This result is for a reversible process, so it may be substituted in the formula for the entropy change to obtain :\Delta S = n R \ln \frac. Since an ideal gas obeys
Boyle's Law Boyle's law, also referred to as the Boyle–Mariotte law, or Mariotte's law (especially in France), is an experimental gas law that describes the relationship between pressure and volume of a confined gas. Boyle's law has been stated as: The ...
, this can be rewritten, if desired, as :\Delta S = n R \ln \frac. Once obtained, these formulas can be applied to an irreversible process, such as the
free expansion Free may refer to: Concept * Freedom, having the ability to do something, without having to obey anyone/anything * Freethought, a position that beliefs should be formed only on the basis of logic, reason, and empiricism * Emancipate, to procur ...
of an ideal gas. Such an expansion is also isothermal and may have the same initial and final states as in the reversible expansion. Since entropy is a state function (that depends on an equilibrium state, not depending on a path that the system takes to reach that state), the change in entropy of the system is the same as in the reversible process and is given by the formulas above. Note that the result ''Q'' = 0 for the free expansion can not be used in the formula for the entropy change since the process is not reversible. The difference between the reversible and irreversible is found in the entropy of the surroundings. In both cases, the surroundings are at a constant temperature, ''T'', so that Δ''S''sur = −; the minus sign is used since the heat transferred to the surroundings is equal in magnitude and opposite in sign to the heat ''Q'' transferred to the system. In the reversible case, the change in entropy of the surroundings is equal and opposite to the change in the system, so the change in entropy of the universe is zero. In the irreversible, ''Q'' = 0, so the entropy of the surroundings does not change and the change in entropy of the universe is equal to ΔS for the system.


See also

* Joule–Thomson effect *
Joule expansion The Joule expansion (also called free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacu ...
(also called free expansion) *
Adiabatic process In thermodynamics, an adiabatic process (Greek: ''adiábatos'', "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal proces ...
*
Cyclic process A thermodynamic cycle consists of a linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventual ...
*
Isobaric process In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: Δ''P'' = 0. The heat transferred to the system does work, but also changes the internal energy (''U'') of t ...
*
Isochoric process In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. ...
* Polytropic process *
Spontaneous process In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamic ...


References

{{reflist Thermodynamic processes Atmospheric thermodynamics