hypogonadotropic hypogonadism
   HOME

TheInfoList



OR:

Hypogonadotropic hypogonadism (HH), is due to problems with either the
hypothalamus The hypothalamus (: hypothalami; ) is a small part of the vertebrate brain that contains a number of nucleus (neuroanatomy), nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrin ...
or
pituitary gland The pituitary gland or hypophysis is an endocrine gland in vertebrates. In humans, the pituitary gland is located at the base of the human brain, brain, protruding off the bottom of the hypothalamus. The pituitary gland and the hypothalamus contr ...
affecting the hypothalamic-pituitary-gonadal axis (HPG axis). Hypothalamic disorders result from a deficiency in the release of gonadotropic releasing hormone ( GnRH), while pituitary gland disorders are due to a deficiency in the release of gonadotropins from the
anterior pituitary The anterior pituitary (also called the adenohypophysis or pars anterior) is a major Organ (anatomy), organ of the endocrine system. The anterior pituitary is the glandular, Anatomical terms of location#Usage in human anatomy, anterior lobe that t ...
. GnRH is the central regulator in reproductive function and sexual development via the HPG axis. GnRH is released by GnRH neurons, which are hypothalamic neuroendocrine cells, into the hypophyseal portal system acting on gonadotrophs in the anterior pituitary. The release of gonadotropins, LH and FSH, act on the gonads for the development and maintenance of proper adult reproductive physiology. LH acts on Leydig cells in the male testes and theca cells in the female. FSH acts on Sertoli cells in the male and follicular cells in the female. Combined this causes the secretion of gonadal sex steroids and the initiation of folliculogenesis and
spermatogenesis Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testicle. This process starts with the Mitosis, mitotic division of the stem cells located close to the basement membrane of ...
. The production of sex steroids forms a
negative feedback Negative feedback (or balancing feedback) occurs when some function (Mathematics), function of the output of a system, process, or mechanism is feedback, fed back in a manner that tends to reduce the fluctuations in the output, whether caused ...
loop acting on both the anterior pituitary and hypothalamus causing a pulsatile secretion of GnRH. GnRH neurons lack sex steroid receptors and mediators such as kisspeptin stimulate GnRH neurons for pulsatile secretion of GnRH.


Types

Despite the genetic basis for hypogonadotropic hypogonadism remaining largely unknown, there are two known subtypes of HH, congenital HH (CHH) and acquired HH (AHH). CHH is either due to genetic abnormalities resulting in non-functional gonadotrophin-releasing hormone (GnRH) secreting neurons or the complete/partial failure of pubertal, puberty due to incorrect cell dysfunction resulting in insufficient secretion of the pituitary gonadotropin. CHH is divided into 2 subtypes depending on the condition of the olfactory system, anosmic HH ( Kallman syndrome) and normosmic HH. AHH is an acquired form of the disease often occurring after sexual maturation and is not related to genetic defects. AHH can also be developed through drug and alcohol use and encephalic trauma. AHH, in a clinical setting, can be shown through a lack/delay/stop of maturation as it relates to pubertal. Although therapy, and or treatment, is mostly up to the patient depending on their fertility desire, it is often treated by testosterone supplements for males, and estrogen supplements for females.


Pathogenesis

CHH is a type of HH resulting from the abnormal migration of GnRH neurons during embryonic development. GnRH neurons are derived from the olfactory placode and migrate into the central nervous system (CNS) during embryonic development. Embryonic migration can be affected by several gene mutations including but not limited to, KAL1, fibroblast growth factor ( FGF8), sex determining region Y-Box 10 (
SOX10 Transcription factor SOX-10 is a protein that in humans is encoded by the ''SOX10'' gene. Function This gene encodes a member of the SOX gene family, SOX (Testis-determining factor, SRY-related HMG-box) family of transcription factors involved ...
), GNRHR, GNRH1 and KISS1R. Kallmann syndrome results in a loss of smell (anosmia) and is associated with KAL1 mutations. The KAL1 gene encodes anosmin-1, an extracellular adhesion molecule that plays a role in GnRH neuronal migration and adhesion. Mutated KAL1 genes leads to ill GnRH neuronal migration as well as olfactory neuron disorder causing anosmia and non-functional GnRH releasing neurons. Mutations of KAL1 are mostly nucleotide insertion or deletion causing frame shifts in the translation of anosmin-1 resulting in a faulty protein. Inactivating mutations in the genes encoding GNRH1 or its receptor will result in the failure of the HPG axis and give rise to normosmic CHH. Inactivating mutations of KISS1 or KISS1R causes normosmic CHH in humans. This is because KISS1 is the mediator for the feedback loop in the HPG axis allowing low levels of sex steroid to stimulate GnRH secretion from the hypothalamus. Congenital hypogonadotropic hypogonadism, CHH, is a genetically, as well as clinically, heterogenous disorder stemming from over 25 causal genes identified to date, with cases reported as being X-linked, recessive and autosomally inherited. Acquired hypogonadotropic hypogonadism (AHH) is a postnatal onset of a GnRH releasing disorder and/or pituitary gonadotroph cell disorder. There are many causes of AHH, mostly due to structural lesions or functional abnormalities involving the HPG axis such as
sarcoidosis Sarcoidosis (; also known as Besnier–Boeck–Schaumann disease) is a disease involving abnormal collections of White blood cell, inflammatory cells that form lumps known as granulomata. The disease usually begins in the lungs, skin, or lymph n ...
, lymphocytic hypophysitis, pituitary adenomas, craniopharyngiomas and other CNS tumours. Most of these patients have multiple pituitary hormone deficiencies. Hyperprolactinaemia is the most common cause of AHH. It is a well-established cause of infertility in both male and female mammals.
Prolactin Prolactin (PRL), also known as lactotropin and mammotropin, is a protein best known for its role in enabling mammals to produce milk. It is influential in over 300 separate processes in various vertebrates, including humans. Prolactin is secr ...
inhibits GnRH neurons and therefore inhibits the subsequent release of LH, FSH and sex steroids. The mechanism of prolactin induced inhibition of GnRH release is poorly understood. It is suspected that the prolactin receptor is expressed on a small subset of GnRH neurons in mice and thus has a direct inhibitory effect on GnRH release. There is evidence to suggest indirect inhibition of GnRH neurons mediated by other neurotransmitters such as
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. It is an amine synthesized ...
,
opioid Opioids are a class of Drug, drugs that derive from, or mimic, natural substances found in the Papaver somniferum, opium poppy plant. Opioids work on opioid receptors in the brain and other organs to produce a variety of morphine-like effects, ...
,
neuropeptide Y Neuropeptide Y (NPY) is a 36 amino-acid neuropeptide that is involved in various physiological and homeostatic processes in both the central and peripheral nervous systems. It is secreted alongside other neurotransmitters such as GABA and glu ...
and
γ-aminobutyric acid GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
. Drug usage of glucocorticoids and opioid analgesics in high dosages can lead to the inhibition of GnRH synthesis. Opioid receptors reside in the hypothalamus and when bound to opioids they decrease the normal pulsatile secretion of GnRH and therefore result in HH. Chronic treatment with supraphysiological doses of glucocorticoids results in a marked decrease in testosterone without an increase of LH levels, suggestive of a central mechanism of induced HH.


Diagnosis

The clinical presentation of HH depend on the time of onset as well as the severity of the defect. Diagnostic tests to measure GnRH levels are difficult. This is because GnRH, when confined within hypophyseal portal system, has a short half-life of 2–4 minutes. GnRH levels are thus checked indirectly via blood testing. These blood tests measure the levels of hormones such as prolactin, estradiol, testosterone, TSH, but specifically LH and FSH levels which will be totally or partially absent in HH. Exogenous GnRH can be used as a diagnostic tool. If the patient has hypothalamic GnRH deficiency, LH and FSH will gradually appear in response to the exogenous GnRH but in pituitary cases of HH, a minimal response will be generated. Typically, CHH is diagnosed in adolescence due to a lack of pubertal development, but it can be possible to diagnose in male neonates. Clinical presentations of CHH involve an absence of puberty by 18 years of age, poorly developed secondary sexual characteristics, or infertility. In men with CHH, serum levels of inhibin B are typically very low as inhibin B is a marker of Sertoli cell number. For females, CHH is most commonly revealed by primary amenorrhea. Breast development is variable and pubic hair may or may not be present. CHH can be diagnosed in the male neonate with cryptorchidism (maldescended testes) and a micropenis as signs of GnRH deficiency. There are no clear signs of CHH in female neonates. Another clinical sign of CHH, more specifically Kallmann syndrome, is a lack of a sense of smell due to the altered migration of GnRH neurons on the olfactory placode. Kallmann syndrome can also be shown through MRI imaging with irregular morphology or aplasia of the olfactory bulb and olfactory sulci. Anterior pituitary function must be normal for all other axes in CHH as it is an isolated disorder. Testing anterior pituitary function is helpful to identify if the HH is due to hyperprolactinemia.


Management

The goal for HH therapy is to induce pubertal development, sexual function, fertility, bone health, and psychological wellbeing. Testosterone therapy for males and estradiol therapy for females is used to improve genital development, develop secondary sexual characteristics, allow for the growth and closure of the
epiphyseal plate The epiphyseal plate, epiphysial plate, physis, or growth plate is a hyaline cartilage plate in the metaphysis at each end of a long bone. It is the part of a long bone where new bone growth takes place; that is, the whole bone is alive, with ma ...
, as well as improving sexual function. This therapy does not restore fertility as gonadotropins are required for spermatogenesis and folliculogenesis. If fertility is desired, pulsatile GnRH therapy or gonadotropin therapy is necessary. Gonadotropin therapy involves the use of human chorionic gonadotropin (hCG) and FSH. In the male, hCG stimulates Leydig cells to produce testosterone so that plasma and testicular levels increase. With the increased levels of testosterone, sexual activity, libido and overall wellbeing should improve. Administration of FSH is required to induce spermatogenesis by acting on Sertoli cells. FSH is required for maintaining the production of high numbers of good quality sperm. Gonadotropin therapy in HH men usually is able to generate enough sperm for fertility to occur, however sperm count is still lower than normal. In the female, the goal for gonadotropin therapy is to obtain ovulation. This is obtained with FSH treatment followed by hCG or LH to trigger ovulation. FSH will stimulate granulosa cells for follicular maturation while LH will act on luteal cells to produce steroids aiding follicular maturation and preparing the endometrium for pregnancy. For hyperprolactinaemia-caused AHH, dopamine agonists are used to improve GnRH secretion.
Dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. It is an amine synthesized ...
binds to D2 receptors on
lactotrophs A prolactin cell (also known as a lactotropic cell, epsilon acidophil, lactotrope, lactotroph, mammatroph, mammotroph) is a cell (biology), cell in the anterior pituitary which produces prolactin (a peptide hormone) in response to hormonal signa ...
within the anterior pituitary. This results in the inhibition of secretion of prolactin resulting in less direct and indirect inhibition of GnRH secretion. In up to 10–20% of cases, patients can exhibit sustained fertility and steroid production after therapy, resulting in hypogonadotropic hypogonadism reversal. The mechanism for this reversal is unknown but there is believed to be some neuronal plasticity within GnRH releasing cells.


See also

*
Androgen An androgen (from Greek ''andr-'', the stem of the word meaning ) is any natural or synthetic steroid hormone that regulates the development and maintenance of male characteristics in vertebrates by binding to androgen receptors. This includes ...
s and
estrogen Estrogen (also spelled oestrogen in British English; see spelling differences) is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three ...
s * GnRH and gonadotropins ( FSH and LH) * Hypergonadotropic hypogonadism * Hypothalamic–pituitary–gonadal axis * Isolated hypogonadotropic hypogonadism


References


External links

{{Gonadal disorder Endocrine gonad disorders Gonadotropin-releasing hormone and gonadotropins Intersex variations