HOME

TheInfoList



OR:

The electronic–hydraulic analogy (derisively referred to as the drain-pipe theory by
Oliver Lodge Sir Oliver Joseph Lodge, (12 June 1851 – 22 August 1940) was a British physicist and writer involved in the development of, and holder of key patents for, radio. He identified electromagnetic radiation independent of Hertz's proof and at his ...
) is the most widely used analogy for "electron fluid" in a metal conductor. Since
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movi ...
is invisible and the processes in play in
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
are often difficult to demonstrate, the various
electronic component An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are no ...
s are represented by
hydraulic Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counte ...
equivalents.
Electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
(as well as
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
) was originally understood to be a kind of
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
, and the names of certain electric quantities (such as current) are derived from hydraulic equivalents. As with all analogies, it demands an intuitive and competent understanding of the baseline
paradigm In science and philosophy, a paradigm () is a distinct set of concepts or thought patterns, including theories, research methods, postulates, and standards for what constitute legitimate contributions to a field. Etymology ''Paradigm'' comes f ...
s (electronics and hydraulics), and in the case of the hydraulic analogy for electronics, students often have an inadequate knowledge of hydraulics.


Paradigms

There is no unique paradigm for establishing this analogy. Different paradigms have different strengths and weaknesses, depending on how and in what ways the intuitive understanding of the source of the analogy matches with phenomena in electronics. Two paradigms can be used to introduce the concept to students using pressure induced by gravity or by pumps. In the version with pressure induced by gravity, large tanks of water are held up high, or are filled to differing water levels, and the potential energy of the water
head A head is the part of an organism which usually includes the ears, brain, forehead, cheeks, chin, eyes, nose, and mouth, each of which aid in various sensory functions such as sight, hearing, smell, and taste. Some very simple animals ...
is the pressure source. This is reminiscent of electrical diagrams with an up arrow pointing to +V, grounded pins that otherwise are not shown connecting to anything, and so on. This has the advantage of associating
electric potential The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
with
gravitational potential In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric ...
. A second paradigm is a completely enclosed version with pumps providing pressure only and no gravity. This is reminiscent of a circuit diagram with a voltage source shown and the wires actually completing a circuit. This paradigm is further discussed below. Other paradigms highlight the similarities between equations governing the flow of fluid and the flow of charge. Flow and pressure variables can be calculated in both steady and transient fluid flow situations with the use of the hydraulic ohm analogy. Hydraulic ohms are the units of hydraulic impedance, which is defined as the ratio of pressure to volume flow rate. The pressure and volume flow variables are treated as
phasor In physics and engineering, a phasor (a portmanteau of phase vector) is a complex number representing a sinusoidal function whose amplitude (''A''), angular frequency (''ω''), and initial phase (''θ'') are time-invariant. It is related to ...
s in this definition, so possess a phase as well as magnitude. A slightly different paradigm is used in acoustics, where
acoustic impedance Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cu ...
is defined as a relationship between acoustic pressure and acoustic particle velocity. In this paradigm, a large cavity with a hole is analogous to a capacitor that stores compressional energy when the time-dependent pressure deviates from atmospheric pressure. A hole (or long tube) is analogous to an inductor that stores kinetic energy associated with the flow of air.


Hydraulic analogy with horizontal water flow


Voltage, current, and charge

In general,
electric potential The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
is equivalent to
hydraulic head Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum., 410 pages. See pp. 43–44., 650 pages. See p. 22. It is usually measured as a liquid surface elevation, expressed in units of length, ...
. This model assumes that the water is flowing horizontally, so that the force of gravity can be ignored. In this case, electric potential is equivalent to
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
. The
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
(or
voltage drop Voltage drop is the decrease of electrical potential along the path of a current flowing in an electrical circuit. Voltage drops in the internal resistance of the source, across conductors, across contacts, and across connectors are undesirab ...
or ''potential difference'') is a difference in pressure between two points. Electric potential and voltage are usually measured in
volts The volt (symbol: V) is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827). Defini ...
.
Electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movi ...
is equivalent to a hydraulic volume flow rate; that is, the volumetric quantity of flowing water over time. Usually measured in
amperes The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
. A unit of
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons res ...
is analogous to a unit volume of water.


Basic circuit elements

File:Electrionics Analogy - Pipe (Wire).svg, '' Conducting wire:''  a simple hose. File:Electrionics Analogy - Reduced Pipe (Resistor).svg, ''
Resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
:'' a constricted pipe. File:1-1111 CU-solderfitting-type 5130-22.jpg, ''Node in Kirchhoff's junction rule:'' A pipe tee filled with flowing water.
A relatively wide hose completely filled with water is equivalent to a conducting wire. A rigidly mounted pipe is equivalent to a trace on a circuit board. When comparing to a trace or wire, the hose or pipe should be thought of as having semi-permanent caps on the ends. Connecting one end of a wire to a circuit is equivalent to un-capping one end of the hose and attaching it to another. With few exceptions (such as a high-voltage power source), a wire with only one end attached to a circuit will do nothing; the hose remains capped on the free end, and thus adds nothing to the circuit. A
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
is equivalent to a constriction in the bore of a pipe which requires more pressure to pass the same amount of water. All pipes have some resistance to flow, just as all wires and traces have some resistance to current. A node (or junction) in Kirchhoff's junction rule is equivalent to a pipe tee. The net flow of water into a piping tee (filled with water) must equal the net flow out. File:CapacitorHydraulicAnalogyAnimation.gif, ''
Capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
:''  a flexible diaphragm sealed inside a pipe. File:Hydraulic inductor model.svg, ''
Inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
:''  a heavy paddle wheel or turbine placed in the current. File:Axial compressor.gif, ''
Voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
or
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
source:''  A dynamic pump with feedback control.
A
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
is equivalent to a tank with one connection at each end and a rubber sheet dividing the tank in two lengthwise (a
hydraulic accumulator A hydraulic accumulator is a pressure storage reservoir in which an incompressible hydraulic fluid is held under pressure that is applied by an external source of mechanical energy. The external source can be an engine, a spring, a raised weigh ...
). When water is forced into one pipe, equal water is simultaneously forced out of the other pipe, yet no water can penetrate the rubber diaphragm. Energy is stored by the stretching of the rubber. As more current flows "through" the capacitor, the back-pressure (voltage) becomes greater, thus current "leads" voltage in a capacitor. As the back-pressure from the stretched rubber approaches the applied pressure, the current becomes less and less. Thus capacitors "filter out" constant pressure differences and slowly varying, low-frequency pressure differences, while allowing rapid changes in pressure to pass through. An
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
is equivalent to a heavy paddle wheel placed in the current. The
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
of the wheel and the size of the blades restrict the water's ability to rapidly change its rate of flow (current) through the wheel due to the effects of
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
, but, given time, a constant flowing stream will pass mostly unimpeded through the wheel, as it turns at the same speed as the water flow. The mass and surface area of the wheel and its blades are analogous to inductance, and friction between its axle and the axle bearings corresponds to the resistance that accompanies any non-superconducting inductor.
An alternative inductor model is simply a long pipe, perhaps coiled into a spiral for convenience. This fluid-inertia device is used in real life as an essential component of a
hydraulic ram A hydraulic ram, or hydram, is a cyclic water pump powered by hydropower. It takes in water at one "hydraulic head" (pressure) and flow rate, and outputs water at a higher hydraulic head and lower flow rate. The device uses the water hammer ef ...
. The
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
of the water flowing through the pipe produces the inductance effect; inductors "filter out" rapid changes in flow, while allowing slow variations in current to be passed through. The drag imposed by the walls of the pipe is somewhat analogous to
parasitic resistance In electrical networks, a parasitic element is a circuit element ( resistance, inductance or capacitance) that is possessed by an electrical component but which it is not desirable for it to have for its intended purpose. For instance, a resistor ...
. In either model, the pressure difference (voltage) across the device must be present before the current will start moving, thus in inductors, voltage "leads" current. As the current increases, approaching the limits imposed by its own internal friction and of the current that the rest of the circuit can provide, the pressure drop across the device becomes lower and lower. An ideal
voltage source A voltage source is a two-terminal device which can maintain a fixed voltage. An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current. However, a real-world voltage source cannot supply unl ...
(ideal
battery Battery most often refers to: * Electric battery, a device that provides electrical power * Battery (crime), a crime involving unlawful physical contact Battery may also refer to: Energy source *Automotive battery, a device to provide power t ...
) or ideal
current source A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it. A current source is the dual of a voltage source. The term ''current sink'' is sometimes used for sources fed ...
is a dynamic pump with feedback control. A pressure meter on both sides shows that regardless of the current being produced, this kind of pump produces constant pressure difference. If one terminal is kept fixed at ground, another analogy is a large body of water at a high elevation, sufficiently large that the drawn water does not affect the water level. To create the analog of an ideal
current source A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it. A current source is the dual of a voltage source. The term ''current sink'' is sometimes used for sources fed ...
, use a
positive displacement pump A pump is a device that moves fluids (liquids or gases), or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy. Pumps can be classified into three major groups according to the method they ...
: A current meter (little
paddle wheel A paddle wheel is a form of waterwheel or impeller in which a number of paddles are set around the periphery of the wheel. It has several uses, of which some are: * Very low-lift water pumping, such as flooding paddy fields at no more than a ...
) shows that when this kind of pump is driven at a constant speed, it maintains a constant speed of the little paddle wheel.


Other circuit elements

Image:Electrionics Analogy - Valve (Diode, conducting).svg, A simple one-way ball-type check valve, in its "open" state acts as a diode in its conducting state. Image:Electrionics Analogy - Pressure-activated valve (Transistor).svg, A pressure-actuated valve combined with a one-way check valve acts as a (field-effect) transistor. Image:Electrionics Analogy - Valve (Diodes comparison).svg, Like a one-way check valve, a diode blocks current that flows the wrong way. Current that flows the right way goes through almost unchanged. Image:Electrionics Analogy - Example Circuit.svg, A simple A/C circuit consisting of an oscillating pump, a "diode" valve, and a "capacitor" tank. Any kind of motor could be used here to drive the pump, as long as it oscillates. A
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
is equivalent to a one-way
check valve A check valve, non-return valve, reflux valve, retention valve, foot valve, or one-way valve is a valve that normally allows fluid ( liquid or gas) to flow through it in only one direction. Check valves are two-port valves, meaning they have ...
with a slightly leaky valve seat. As with a diode, a small pressure difference is needed before the valve opens. And like a diode, too much
reverse bias Reverse or reversing may refer to: Arts and media * ''Reverse'' (Eldritch album), 2001 * ''Reverse'' (2009 film), a Polish comedy-drama film * ''Reverse'' (2019 film), an Iranian crime-drama film * ''Reverse'' (Morandi album), 2005 * ''Reverse'' ...
can damage or destroy the valve assembly. A
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
is a valve in which a diaphragm, controlled by a low-current signal (either constant current for a BJT or constant pressure for a FET), moves a plunger which affects the current through another section of pipe.
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSF ...
is a combination of two
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
transistors. As the input pressure changes, the pistons allow the output to connect to either zero or positive pressure. A
memristor A memristor (; a portmanteau of ''memory resistor'') is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of fu ...
is a
needle valve A needle valve is a type of valve with a small port and a threaded, needle-shaped plunger. It allows precise regulation of flow, although it is generally only capable of relatively low flow rates. Construction and operation An instrument ne ...
operated by a flow meter. As water flows through in the forward direction, the needle valve restricts flow more; as water flows the other direction, the needle valve opens further, providing less resistance.


Practical application

On the basis of this analogy
Johan van Veen Johan van Veen (Uithuizermeeden, 21 December 1893 – The Hague, 9 December 1959) was a Dutch hydraulic engineer. He is considered the father of the Delta Works. Education Johan van Veen was the fifth child of seven in a farming family. He was ...
developed around 1937 a method to compute tidal currents with an electric analogue. After the
North Sea flood of 1953 The 1953 North Sea flood was a major flood caused by a heavy storm surge that struck the Netherlands, north-west Belgium, England and Scotland. Most sea defences facing the surge were overwhelmed, causing extensive flooding. The storm and flo ...
in The Netherlands he elaborated this idea, which eventually lead to the analog computer ‘’
Deltar {{Short description, An analog computer The Deltar (''Delta Getij Analogon Rekenmachine'', Dutch for Delta Tide Analog Calculator) was an analog computer, used for the design and implementation of the Delta Works from 1960 until 1984. The compu ...
’’, which was used to make the hydraulic computations for the closures in the framework of the
Delta Works The Delta Works ( nl, Deltawerken) is a series of construction projects in the southwest of the Netherlands to protect a large area of land around the Rhine–Meuse–Scheldt delta from the sea. Constructed between 1954 and 1997, the works con ...
.


Principal equivalents

EM wave speed (
velocity of propagation The velocity factor (VF), also called wave propagation speed or velocity of propagation (VoP or of a transmission medium is the ratio of the speed at which a wavefront (of an electromagnetic signal, a radio signal, a light pulse in an optical fi ...
) is equivalent to the
speed of sound The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At , the speed of sound in air is about , or one kilometre in or one mile in . It depends strongly on temperature as we ...
in water. When a light switch is flipped, the electric wave travels very quickly through the wires. Charge flow speed (
drift velocity In physics, a drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field. In general, an electron in a conductor will propagate randomly at the Fermi velocity, resulting in an a ...
) is equivalent to the particle speed of water. The moving charges themselves move rather slowly. DC is equivalent to a constant flow of water in a circuit of pipes.
Low frequency Low frequency (LF) is the ITU designation for radio frequencies (RF) in the range of 30–300  kHz. Since its wavelengths range from 10–1  km, respectively, it is also known as the kilometre band or kilometre wave. LF radio waves e ...
AC is equivalent to water oscillating back and forth in a pipe Higher-frequency AC and
transmission line In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmi ...
s is somewhat equivalent to
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
being transmitted through the water pipes, though this does not properly mirror the cyclical reversal of alternating electric current. As described, the fluid flow conveys pressure fluctuations, but fluids do not reverse at high rates in hydraulic systems, which the above "low frequency" entry does accurately describe. A better concept (if sound waves are to be the phenomenon) is that of direct current with high-frequency "ripple" superimposed. Inductive spark used in
induction coil An induction coil or "spark coil" ( archaically known as an inductorium or Ruhmkorff coil after Heinrich Rühmkorff) is a type of electrical transformer used to produce high-voltage pulses from a low-voltage direct current (DC) supply. p.98 ...
s is similar to
water hammer Hydraulic shock (colloquial: water hammer; fluid hammer) is a pressure surge or wave caused when a fluid in motion, usually a liquid but sometimes also a gas is forced to stop or change direction suddenly; a momentum change. This phenomenon com ...
, caused by the inertia of water


Equation examples

If the differential equations are equivalent in form, the dynamics of the systems they describe will be related. The example hydraulic equations approximately describe the relationship between a constant, laminar flow in a cylindrical pipe and the difference in pressure at each end, as long as the flow is not analyzed near the ends of the pipe. The example electric equations approximately describe the relationship between a current in a straight wire and the difference in electric potential (voltage). In these two cases, the states of both systems are well-approximated by the differential equations above, and so the states are related. The assumptions that make these differential equations good approximates are needed for this relationship. Any deviations from the assumptions (e.g. pipe or wire is not straight, flow or current is changing over time, other factors are influencing potential) can make the relationship fail to hold. The differential equations for hydraulics and electronics above are special cases of the
Navier–Stokes equations In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician Geo ...
and
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
, respectively, and the two are not equivalent in form.


Limits to the analogy

If taken too far, the water analogy can create misconceptions. Negative transfer can occur when there is a mismatch between phenomena in the source (hydraulics) and the corresponding phenomena in the target (electronics). For the analogy to be useful, one must remain aware of the regions where electricity and water behave very differently. Fields (
Maxwell equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. Th ...
,
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
): Electrons can push or pull other distant electrons via their fields, while water molecules experience forces only from direct contact with other molecules. For this reason, waves in water travel at the speed of sound, but waves in a sea of charge will travel much faster as the forces from one electron are applied to many distant electrons and not to only the neighbors in direct contact. In a hydraulic transmission line, the energy flows as mechanical waves through the water, but in an electric transmission line the energy flows as fields in the space surrounding the wires, and does not flow inside the metal. Also, an accelerating electron will drag its neighbors along while attracting them, both because of magnetic forces. Charge: Unlike water, movable charge carriers can be positive or negative, and conductors can exhibit an overall positive or negative net charge. The mobile carriers in electric currents are usually electrons, but sometimes they are charged positively, such as the positive ions in an
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon ...
, the H+ ions in
proton conductor A proton conductor is an electrolyte, typically a solid electrolyte, in which H+ are the primary charge carriers. Composition Acid solutions exhibit proton-conductivity, while pure proton conductors are usually dry solids. Typical materials a ...
s or holes in
p-type semiconductor An extrinsic semiconductor is one that has been '' doped''; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it differen ...
s and some (very rare) conductors. Leaking pipes: The
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons res ...
of an electrical circuit and its elements is usually almost equal to zero, hence it is (almost) constant. This is formalized in Kirchhoff's current law, which does not have an analogy to hydraulic systems, where the amount of the liquid is not usually constant. Even with
incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An eq ...
liquid the system may contain such elements as
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-t ...
s and open pools, so the volume of liquid contained in a part of the system can change. For this reason, continuing electric currents require closed loops rather than hydraulics' open source/sink resembling spigots and buckets. Fluid velocity and resistance of metals: As with water hoses, the carrier drift velocity in conductors is directly proportional to current. However, water only experiences drag via the pipes' inner surface, while charges are slowed at all points within a metal, as with water forced through a filter. Also, typical velocity of charge carriers within a conductor is less than centimeters per minute, and the "electrical friction" is extremely high. If charges ever flowed as fast as water can flow in pipes, the electric current would be immense, and the conductors would become incandescently hot and perhaps vaporize. To model the resistance and the charge-velocity of metals, perhaps a pipe packed with sponge, or a narrow straw filled with syrup, would be a better analogy than a large-diameter water pipe.
Quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
: Solid conductors and insulators contain charges at more than one discrete level of atomic orbit energy, while the water in one region of a pipe can only have a single value of pressure. For this reason there is no hydraulic explanation for such things as a
battery Battery most often refers to: * Electric battery, a device that provides electrical power * Battery (crime), a crime involving unlawful physical contact Battery may also refer to: Energy source *Automotive battery, a device to provide power t ...
's charge pumping ability, a
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
's depletion layer and voltage drop,
solar cell A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.
functions,
Peltier effect The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when ...
, etc., however equivalent devices can be designed which exhibit similar responses, although some of the mechanisms would only serve to regulate the flow curves rather than to contribute to the component's primary function. In order for the model to be useful, the reader or student must have a substantial understanding of the model (hydraulic) system's principles. It also requires that the principles can be transferred to the target (electrical) system. Hydraulic systems are deceptively simple: the phenomenon of pump cavitation is a known, complex problem that few people outside of the fluid power or irrigation industries would understand. For those who do, the hydraulic analogy is amusing, as no "cavitation" equivalent exists in electrical engineering. The hydraulic analogy can give a mistaken sense of understanding that will be exposed once a detailed description of electrical circuit theory is required. One must also consider the difficulties in trying to make an analogy match reality completely. The above "electrical friction" example, where the hydraulic analog is a pipe filled with sponge material, illustrates the problem: the model must be increased in complexity beyond any realistic scenario.


See also

*
Bond graph A bond graph is a graphical representation of a physical dynamic system. It allows the conversion of the system into a state-space representation. It is similar to a block diagram or signal-flow graph, with the major difference that the arcs in ...
* Fluidics *
Hydraulic circuit Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and b ...
*
Hydraulic conductivity Hydraulic conductivity, symbolically represented as (unit: m/s), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fractures network. It depends on ...
*
Mechanical–electrical analogies Mechanical–electrical analogies are the representation of mechanical systems as electrical networks. At first, such analogies were used in reverse to help explain electrical phenomena in familiar mechanical terms. James Clerk Maxwell introduce ...


Notes


External links

{{commons category, Hydraulic analogy
Animation
* Hydraulic Analogy for Inductive Electric Element

Electronics concepts Electrical analogies