HOME

TheInfoList



OR:

A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
with an
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting pla ...
that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky may remain still or trace out a path, typically in a figure-8 form, whose precise characteristics depend on the orbit's
inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Ea ...
and eccentricity. A circular geosynchronous orbit has a constant altitude of . A special case of geosynchronous orbit is the geostationary orbit, which is a circular geosynchronous orbit in Earth's equatorial plane with both inclination and eccentricity equal to 0. A satellite in a geostationary orbit remains in the same position in the sky to observers on the surface.
Communications satellite A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth ...
s are often given geostationary or close to geostationary orbits so that the satellite antennas that communicate with them do not have to move, but can be pointed permanently at the fixed location in the sky where the satellite appears.


History

In 1929,
Herman Potočnik Herman Potočnik (pseudonym Hermann Noordung; 22 December 1892 – 27 August 1929) was an ethnically Slovenian Austro-Hungarian Army officer, electrical engineer and astronautics theorist. He is regarded as a pioneer and visionary of modern space f ...
described both geosynchronous orbits in general and the special case of the geostationary Earth orbit in particular as useful orbits for space stations. The first appearance of a geosynchronous
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
in popular literature was in October 1942, in the first Venus Equilateral story by
George O. Smith George Oliver Smith (April 9, 1911 – May 27, 1981) (also known by the pseudonym Wesley Long) was an American science fiction author. He is not to be confused with George H. Smith, another American science fiction author. Biography Smith was ...
,"(Korvus's message is sent) to a small, squat building at the outskirts of Northern Landing. It was hurled at the sky. ... It ... arrived at the relay station tired and worn, ... when it reached a space station only five hundred miles above the city of North Landing." but Smith did not go into details. British
science fiction Science fiction (sometimes shortened to Sci-Fi or SF) is a genre of speculative fiction which typically deals with imaginative and futuristic concepts such as advanced science and technology, space exploration, time travel, parallel uni ...
author
Arthur C. Clarke Sir Arthur Charles Clarke (16 December 191719 March 2008) was an English science-fiction writer, science writer, futurist, inventor, undersea explorer, and television series host. He co-wrote the screenplay for the 1968 film '' 2001: A Spac ...
popularised and expanded the concept in a 1945 paper entitled ''Extra-Terrestrial Relays – Can Rocket Stations Give Worldwide Radio Coverage?'', published in '' Wireless World'' magazine. Clarke acknowledged the connection in his introduction to ''The Complete Venus Equilateral''."It is therefore quite possible that these stories influenced me subconsciously when ... I worked out the principles of synchronous communications satellites ...", The orbit, which Clarke first described as useful for broadcast and relay communications satellites, is sometimes called the Clarke Orbit. Similarly, the collection of artificial satellites in this orbit is known as the Clarke Belt. In technical terminology, the geosynchronous orbits are often referred to as geostationary if they are roughly over the equator, but the terms are used somewhat interchangeably. Specifically, geosynchronous Earth orbit (GEO) may be a synonym for ''geosynchronous equatorial orbit'', or ''geostationary Earth orbit''. The first geosynchronous satellite was designed by Harold Rosen while he was working at Hughes Aircraft in 1959. Inspired by Sputnik 1, he wanted to use a geostationary (geosynchronous equatorial) satellite to globalise communications. Telecommunications between the US and Europe was then possible between just 136 people at a time, and reliant on high frequency radios and an
undersea cable Submarine cable is any electrical cable that is laid on the seabed, although the term is often extended to encompass cables laid on the bottom of large freshwater bodies of water. Examples include: *Submarine communications cable *Submarine power ...
. Conventional wisdom at the time was that it would require too much
rocket A rocket (from it, rocchetto, , bobbin/spool) is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entir ...
power to place a satellite in a geosynchronous orbit and it would not survive long enough to justify the expense, so early efforts were put towards constellations of satellites in low or
medium Medium may refer to: Science and technology Aviation * Medium bomber, a class of war plane * Tecma Medium, a French hang glider design Communication * Media (communication), tools used to store and deliver information or data * Medium ...
Earth orbit. The first of these were the passive Echo balloon satellites in 1960, followed by Telstar 1 in 1962. Although these projects had difficulties with signal strength and tracking that could be solved through geosynchronous satellites, the concept was seen as impractical, so Hughes often withheld funds and support. By 1961, Rosen and his team had produced a cylindrical prototype with a diameter of , height of , weighing ; it was light, and small, enough to be placed into orbit by then-available rocketry, was spin stabilised and used dipole antennas producing a pancake-shaped waveform. In August 1961, they were contracted to begin building the working satellite. They lost Syncom 1 to electronics failure, but Syncom 2 was successfully placed into a geosynchronous orbit in 1963. Although its
inclined orbit A satellite is said to occupy an inclined orbit around Earth if the orbit exhibits an angle other than 0° to the equatorial plane. This angle is called the orbit's inclination. A planet is said to have an inclined orbit around the Sun if it ha ...
still required moving antennas, it was able to relay TV transmissions, and allowed for US President John F. Kennedy to phone Nigerian prime minister Abubakar Tafawa Balewa from a ship on August 23, 1963. Today there are hundreds of geosynchronous satellites providing remote sensing, navigation and communications. Although most populated land locations on the planet now have terrestrial communications facilities (
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
, fiber-optic), which often have latency and bandwidth advantages, and telephone access covering 96% of the population and internet access 90% as of 2018, some rural and remote areas in developed countries are still reliant on satellite communications.


Types


Geostationary orbit

A geostationary equatorial orbit (GEO) is a circular geosynchronous orbit in the plane of the Earth's equator with a radius of approximately (measured from the center of the Earth). A satellite in such an orbit is at an altitude of approximately above mean sea level. It maintains the same position relative to the Earth's surface. If one could see a satellite in geostationary orbit, it would appear to hover at the same point in the sky, i.e., not exhibit diurnal motion, while the Sun, Moon, and stars would traverse the skies behind it. Such orbits are useful for telecommunications satellites. A perfectly stable geostationary orbit is an ideal that can only be approximated. In practice the satellite drifts out of this orbit because of perturbations such as the solar wind, radiation pressure, variations in the Earth's gravitational field, and the
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
effect of the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
and Sun, and thrusters are used to maintain the orbit in a process known as station-keeping. Eventually, without the use of thrusters, the orbit will become inclined, oscillating between 0° and 15° every 55 years. At the end of the satellite's lifetime, when fuel approaches depletion, satellite operators may decide to omit these expensive manoeuvres to correct inclination and only control eccentricity. This prolongs the life-time of the satellite as it consumes less fuel over time, but the satellite can then only be used by ground antennas capable of following the N-S movement. Geostationary satellites will also tend to drift around one of two stable longitudes of 75° and 255° without station keeping.


Elliptical and inclined geosynchronous orbits

Many objects in geosynchronous orbits have eccentric and/or inclined orbits. Eccentricity makes the orbit elliptical and appear to oscillate E-W in the sky from the viewpoint of a ground station, while inclination tilts the orbit compared to the equator and makes it appear to oscillate N-S from a groundstation. These effects combine to form an
analemma In astronomy, an analemma (; ) is a diagram showing the position of the Sun in the sky as seen from a fixed location on Earth at the same mean solar time, as that position varies over the course of a year. The diagram will resemble a figur ...
(figure-8). Satellites in elliptical/eccentric orbits must be tracked by steerable ground stations.


Tundra orbit

The Tundra orbit is an eccentric geosynchronous orbit, which allows the satellite to spend most of its time dwelling over one high latitude location. It sits at an inclination of 63.4°, which is a frozen orbit, which reduces the need for stationkeeping. At least two satellites are needed to provide continuous coverage over an area. It was used by the Sirius XM Satellite Radio to improve signal strength in the northern US and Canada.


Quasi-zenith orbit

The Quasi-Zenith Satellite System (QZSS) is a four-satellite system that operates in a geosynchronous orbit at an inclination of 42° and a 0.075 eccentricity. Each satellite dwells over
Japan Japan ( ja, 日本, or , and formally , ''Nihonkoku'') is an island country in East Asia. It is situated in the northwest Pacific Ocean, and is bordered on the west by the Sea of Japan, while extending from the Sea of Okhotsk in the n ...
, allowing signals to reach receivers in urban canyons then passes quickly over Australia.


Launch

Geosynchronous satellites are launched to the east into a prograde orbit that matches the rotation rate of the equator. The smallest inclination that a satellite can be launched into is that of the launch site's latitude, so launching the satellite from close to the equator limits the amount of inclination change needed later. Additionally, launching from close to the equator allows the speed of the Earth's rotation to give the satellite a boost. A launch site should have water or deserts to the east, so any failed rockets do not fall on a populated area. Most
launch vehicle A launch vehicle or carrier rocket is a rocket designed to carry a payload ( spacecraft or satellites) from the Earth's surface to outer space. Most launch vehicles operate from a launch pads, supported by a launch control center and sys ...
s place geosynchronous satellites directly into a geosynchronous transfer orbit (GTO), an elliptical orbit with an
apogee An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any el ...
at GSO height and a low
perigee An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any el ...
. On-board satellite propulsion is then used to raise the perigee, circularise and reach GSO. Once in a viable geostationary orbit, spacecraft can change their longitudinal position by adjusting their semi-major axis such that the new period is shorter or longer than a sidereal day, in order to effect an apparent "drift" Eastward or Westward, respectively. Once at the desired longitude, the spacecraft's period is restored to geosynchronous.


Proposed orbits


Statite proposal

A statite is a hypothetical satellite that uses radiation pressure from the sun against a solar sail to modify its orbit. It would hold its location over the dark side of the Earth at a latitude of approximately 30 degrees. It would return to the same spot in the sky every 24 hours from an Earth-based viewer's perspective, so be functionally similar to a geosynchronous orbit.


Space elevator

A further form of geosynchronous orbit is the theoretical space elevator. When one end is attached to the ground, for altitudes below the geostationary belt the elevator maintains a shorter orbital period than by gravity alone.


Retired satellites

Geosynchronous satellites require some station keeping to keep their position, and once they run out of thruster fuel and are no longer useful they are moved into a higher graveyard orbit. It is not feasible to deorbit geosynchronous satellites as it would take far more fuel than slightly elevating the orbit, and atmospheric drag is negligible, giving GSOs lifetimes of thousands of years. The retirement process is becoming increasingly regulated and satellites must have a 90% chance of moving over 200 km above the geostationary belt at end of life.


Space debris

Space debris in geosynchronous orbits typically has a lower collision speed than at LEO since most GSO satellites orbit in the same plane, altitude and speed; however, the presence of satellites in eccentric orbits allows for collisions at up to 4 km/s. Although a collision is comparatively unlikely, GSO satellites have a limited ability to avoid any debris. Debris less than 10 cm in diameter cannot be seen from the Earth, making it difficult to assess their prevalence. Despite efforts to reduce risk, spacecraft collisions have occurred. The
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (120 ...
telecom satellite
Olympus-1 Olympus-1 was a communications satellite built by Astrium (at the time of the construction of the satellite British Aerospace and Matra Marconi Space) and Thales Alenia Space (also at the time Alcatel Espace and Alenia Spazio), along with Fokker an ...
was struck by a meteoroid on August 11, 1993 and eventually moved to a graveyard orbit,"The Olympus failure"
''ESA press release'', August 26, 1993.
and in 2006 the Russian Express-AM11 communications satellite was struck by an unknown object and rendered inoperable, although its engineers had enough contact time with the satellite to send it into a graveyard orbit. In 2017 both
AMC-9 AMC-9 (formerly GE-12) is a commercial broadcast communications satellite owned by SES World Skies, part of SES S.A. Launched on 6 June 2003, from Baikonur Cosmodrome, Kazakhstan, on the 300th launch of a Proton family rocket, AMC-9 is a hybri ...
and
Telkom-1 Telkom-1 was a geosynchronous communications satellite built by Lockheed Martin, (Sunnyvale, California), for Indonesia's state-owned telecommunications company, PT Telekomunikasi Indonesia Tbk (PT Telkom). It operated for almost 18 years, mor ...
broke apart from an unknown cause.


Properties

A geosynchronous orbit has the following properties: * Period: 1436 minutes (one sidereal day) * Semi-major axis: 42,164 km


Period

All geosynchronous orbits have an orbital period equal to exactly one sidereal day. This means that the satellite will return to the same point above the Earth's surface every (sidereal) day, regardless of other orbital properties. This orbital period, T, is directly related to the semi-major axis of the orbit through the formula: : T = 2\pi\sqrt where: : is the length of the orbit's semi-major axis : \mu is the
standard gravitational parameter In celestial mechanics, the standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of the bodies. For two bodies the parameter may be expressed as G(m1+m2), or as GM whe ...
of the central body


Inclination

A geosynchronous orbit can have any inclination. Satellites commonly have an inclination of zero, ensuring that the orbit remains over the equator at all times, making it stationary with respect to latitude from the point of view of a ground observer (and in the ECEF reference frame). Another popular inclinations is 63.4° for a Tundra orbit, which ensures that the orbit's argument of perigee doesn't change over time.


Ground track

In the special case of a geostationary orbit, the ground track of a satellite is a single point on the
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can also ...
. In the general case of a geosynchronous orbit with a non-zero
inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Ea ...
or eccentricity, the ground track is a more or less distorted figure-eight, returning to the same places once per sidereal day.


See also

* Geostationary orbit * Geosynchronous satellite * Graveyard orbit * High Earth orbit * List of orbits *
List of satellites in geosynchronous orbit This is a list of satellites in geosynchronous orbit (GSO). These satellites are commonly used for communication purposes, such as radio and television networks, back-haul, and direct broadcast. Traditional global navigation systems do not ...
*
Low Earth orbit A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never m ...
*
Medium Earth orbit A medium Earth orbit (MEO) is an Earth-centered orbit with an altitude above a low Earth orbit (LEO) and below a high Earth orbit (HEO) – between above sea level.
* Molniya orbit * Subsynchronous orbit * Supersynchronous orbit * Synchronous orbit


References


External links


Satellites currently in Geosynchronous Orbit, list updated daily



NASA – Planetary Orbits


* ttps://web.archive.org/web/20120204054322/http://www.braeunig.us/space/orbmech.htm Orbital Mechanics(Rocket and Space Technology) * {{DEFAULTSORT:Geosynchronous Orbit Earth orbits Satellite broadcasting +