HOME

TheInfoList



OR:

In mathematics, specifically category theory, a family of generators (or family of separators) of a
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
\mathcal C is a collection \mathcal G \subseteq Ob(\mathcal C) of objects in \mathcal C, such that for any two ''distinct'' morphisms f, g: X \to Y in \mathcal, that is with f \neq g, there is some G in \mathcal G and some morphism h : G \to X such that f \circ h \neq g \circ h. If the collection consists of a single object G, we say it is a generator (or separator). Generators are central to the definition of Grothendieck categories. The dual concept is called a cogenerator or coseparator.


Examples

* In the category of
abelian groups In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commut ...
, the group of integers \mathbf Z is a generator: If ''f'' and ''g'' are different, then there is an element x \in X, such that f(x) \neq g(x). Hence the map \mathbf Z \rightarrow X, n \mapsto n \cdot x suffices. * Similarly, the one-point set is a generator for the
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition o ...
. In fact, any nonempty set is a generator. * In the
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition o ...
, any set with at least two elements is a cogenerator. * In the category of modules over a ring ''R'', a generator in a finite direct sum with itself contains an isomorphic copy of ''R'' as a direct summand. Consequently, a generator module is faithful, i.e. has zero annihilator.


References

* , p. 123, section V.7


External links

* Category theory {{Categorytheory-stub