HOME

TheInfoList



OR:

In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
and
computational geometry Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems ar ...
, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings. For example, generically, two lines in the plane intersect in a single point (they are not parallel or coincident). One also says "two generic lines intersect in a point", which is formalized by the notion of a
generic point In algebraic geometry, a generic point ''P'' of an algebraic variety ''X'' is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point. In classical algebraic g ...
. Similarly, three generic points in the plane are not
collinear In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned o ...
; if three points are collinear (even stronger, if two coincide), this is a
degenerate case In mathematics, a degenerate case is a limiting case of a class of objects which appears to be qualitatively different from (and usually simpler than) the rest of the class, and the term degeneracy is the condition of being a degenerate case. ...
. This notion is important in mathematics and its applications, because degenerate cases may require an exceptional treatment; for example, when stating general
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of t ...
s or giving precise statements thereof, and when writing
computer program A computer program is a sequence or set of instructions in a programming language for a computer to Execution (computing), execute. Computer programs are one component of software, which also includes software documentation, documentation and oth ...
s (see '' generic complexity'').


General linear position

A set of points in a -
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
al
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
(-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
is a common example) is in general linear position (or just general position) if no of them lie in a -
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
al flat for . These conditions contain considerable redundancy since, if the condition holds for some value then it also must hold for all with . Thus, for a set containing at least points in -dimensional affine space to be in general position, it suffices that no
hyperplane In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyper ...
contains more than points – i.e. the points do not satisfy any more linear relations than they must. A set of at most points in general linear position is also said to be ''affinely independent'' (this is the affine analog of
linear independence In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are ...
of vectors, or more precisely of maximal rank), and points in general linear position in affine ''d''-space are an affine basis. See
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generall ...
for more. Similarly, ''n'' vectors in an ''n''-dimensional vector space are linearly independent if and only if the points they define in
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
(of dimension ) are in general linear position. If a set of points is not in general linear position, it is called a
degenerate case In mathematics, a degenerate case is a limiting case of a class of objects which appears to be qualitatively different from (and usually simpler than) the rest of the class, and the term degeneracy is the condition of being a degenerate case. ...
or degenerate configuration, which implies that they satisfy a linear relation that need not always hold. A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).


More generally

This definition can be generalized further: one may speak of points in general position with respect to a fixed class of algebraic relations (e.g.
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
s). In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
this kind of condition is frequently encountered, in that points should impose ''independent'' conditions on curves passing through them. For example, five points determine a conic, but in general six points do not lie on a conic, so being in general position with respect to conics requires that no six points lie on a conic. General position is preserved under biregular maps – if image points satisfy a relation, then under a biregular map this relation may be pulled back to the original points. Significantly, the
Veronese map In mathematics, the Veronese surface is an algebraic surface in five-dimensional projective space, and is realized by the Veronese embedding, the embedding of the projective plane given by the complete linear system of conics. It is named after Giu ...
is biregular; as points under the Veronese map corresponds to evaluating a degree ''d'' polynomial at that point, this formalizes the notion that points in general position impose independent linear conditions on varieties passing through them. The basic condition for general position is that points do not fall on subvarieties of lower degree than necessary; in the plane two points should not be coincident, three points should not fall on a line, six points should not fall on a conic, ten points should not fall on a cubic, and likewise for higher degree. This is not sufficient, however. While nine points determine a cubic, there are configurations of nine points that are special with respect to cubics, namely the intersection of two cubics. The intersection of two cubics, which is 3 \times 3 = 9 points (by
Bézout's theorem Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of polynomials in indeterminates. In its original form the theorem states that ''in general'' the number of common zeros equals the product of the deg ...
), is special in that nine points in general position are contained in a ''unique'' cubic, while if they are contained in two cubics they in fact are contained in a
pencil A pencil () is a writing or drawing implement with a solid pigment core in a protective casing that reduces the risk of core breakage, and keeps it from marking the user's hand. Pencils create marks by physical abrasion, leaving a tra ...
(1-parameter
linear system In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction ...
) of cubics, whose equations are the projective linear combinations of the equations for the two cubics. Thus such sets of points impose one fewer condition on cubics containing them than expected, and accordingly satisfy an additional constraint, namely the
Cayley–Bacharach theorem In mathematics, the Cayley–Bacharach theorem is a statement about cubic curves (plane curves of degree three) in the projective plane . The original form states: :Assume that two cubics and in the projective plane meet in nine (different) p ...
that any cubic that contains eight of the points necessarily contains the ninth. Analogous statements hold for higher degree. For points in the plane or on an algebraic curve, the notion of general position is made algebraically precise by the notion of a regular
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
, and is measured by the vanishing of the higher
sheaf cohomology In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally whe ...
groups of the associated
line bundle In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the '' tangent bundle'' is a way of organisi ...
(formally,
invertible sheaf In mathematics, an invertible sheaf is a coherent sheaf ''S'' on a ringed space ''X'', for which there is an inverse ''T'' with respect to tensor product of ''O'X''-modules. It is the equivalent in algebraic geometry of the topological notion of ...
). As the terminology reflects, this is significantly more technical than the intuitive geometric picture, similar to how a formal definition of
intersection number In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for t ...
requires sophisticated algebra. This definition generalizes in higher dimensions to hypersurfaces (codimension 1 subvarieties), rather than to sets of points, and regular divisors are contrasted with superabundant divisors, as discussed in the
Riemann–Roch theorem for surfaces In mathematics, the Riemann–Roch theorem for surfaces describes the dimension of linear systems on an algebraic surface. The classical form of it was first given by , after preliminary versions of it were found by and . The sheaf-theoretic ver ...
. Note that not all points in general position are projectively equivalent, which is a much stronger condition; for example, any ''k'' distinct points in the line are in general position, but projective transformations are only 3-transitive, with the invariant of 4 points being the
cross ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, t ...
.


Different geometries

Different geometries allow different notions of geometric constraints. For example, a circle is a concept that makes sense in
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, but not in affine linear geometry or projective geometry, where circles cannot be distinguished from ellipses, since one may squeeze a circle to an ellipse. Similarly, a parabola is a concept in affine geometry but not in projective geometry, where a parabola is simply a kind of conic. The geometry that is overwhelmingly used in algebraic geometry is projective geometry, with affine geometry finding significant but far less use. Thus, in Euclidean geometry three non-collinear points determine a circle (as the
circumcircle In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polyg ...
of the triangle they define), but four points in general do not (they do so only for
cyclic quadrilateral In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be ''c ...
s), so the notion of "general position with respect to circles", namely "no four points lie on a circle" makes sense. In projective geometry, by contrast, circles are not distinct from conics, and five points determine a conic, so there is no projective notion of "general position with respect to circles".


General type

General position is a property of configurations of points, or more generally other subvarieties (lines in general position, so no three concurrent, and the like). General position is an ''extrinsic'' notion, which depends on an embedding as a subvariety. Informally, subvarieties are in general position if they cannot be described more simply than others. An ''intrinsic'' analog of general position is
general type In algebraic geometry, the Kodaira dimension ''κ''(''X'') measures the size of the canonical model of a projective variety ''X''. Igor Shafarevich, in a seminar introduced an important numerical invariant of surfaces with the notation ''κ''. ...
, and corresponds to a variety which cannot be described by simpler polynomial equations than others. This is formalized by the notion of Kodaira dimension of a variety, and by this measure projective spaces are the most special varieties, though there are other equally special ones, meaning having negative Kodaira dimension. For algebraic curves, the resulting classification is: projective line, torus, higher genus surfaces (g \geq 2), and similar classifications occur in higher dimensions, notably the Enriques–Kodaira classification of
algebraic surface In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of di ...
s.


Other contexts

In
intersection theory In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem o ...
, both in algebraic geometry and in
geometric topology In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topology may be said to have originate ...
, the analogous notion of transversality is used: subvarieties in general intersect ''transversally,'' meaning with multiplicity 1, rather than being tangent or other, higher order intersections.


General position for Delaunay triangulations in the plane

When discussing
Voronoi tessellation Voronoi or Voronoy is a Slavic masculine surname; its feminine counterpart is Voronaya. It may refer to *Georgy Voronoy (1868–1908), Russian and Ukrainian mathematician **Voronoi diagram **Weighted Voronoi diagram ** Voronoi deformation density ** ...
s and
Delaunay triangulation In mathematics and computational geometry, a Delaunay triangulation (also known as a Delone triangulation) for a given set P of discrete points in a general position is a triangulation DT(P) such that no point in P is inside the circumcircle o ...
s in the plane, a set of points in the plane is said to be in general position only if no four of them lie on the same circle and no three of them are collinear. The usual lifting transform that relates the Delaunay triangulation to the bottom half of a convex hull (i.e., giving each point ''p'' an extra coordinate equal to , ''p'', 2) shows the connection to the planar view: Four points lie on a circle or three of them are collinear exactly when their lifted counterparts are ''not'' in general linear position.


Abstractly: configuration spaces

In very abstract terms, general position is a discussion of generic properties of a configuration space; in this context one means properties that hold on the
generic point In algebraic geometry, a generic point ''P'' of an algebraic variety ''X'' is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point. In classical algebraic g ...
of a configuration space, or equivalently on a Zariski-open set. This notion coincides with the measure theoretic notion of generic, meaning
almost everywhere In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to ...
on the configuration space, or equivalently that points chosen at random will
almost surely In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0. ...
(with probability 1) be in general position.


Notes


References

* {{DEFAULTSORT:General Position Algebraic geometry