HOME

TheInfoList



OR:

A gas meter is a specialized
flow meter Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below: * a) Obstruction type (differential pressure or variable area) ...
, used to measure the volume of fuel gases such as
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
and
liquefied petroleum gas Liquefied petroleum gas (LPG or LP gas) is a fuel gas which contains a flammable mixture of hydrocarbon gases, specifically propane, propylene, butylene, isobutane and n-butane. LPG is used as a fuel gas in heating appliances, cookin ...
. Gas meters are used at residential, commercial, and industrial buildings that consume fuel gas supplied by a gas
utility As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosophe ...
. Gases are more difficult to measure than liquids, because measured volumes are highly affected by temperature and pressure. Gas meters measure a defined volume, regardless of the pressurized quantity or quality of the gas flowing through the meter. Temperature, pressure, and heating value compensation must be made to measure actual amount and value of gas moving through a meter. Several different designs of gas meters are in common use, depending on the volumetric flow rate of gas to be measured, the range of flows anticipated, the type of gas being measured, and other factors. Gas meters that exist in colder climates in buildings built prior to the 1970s were typically located inside the home, typically in the basement or garage. Since then, the vast majority are now placed outside though there are a few exceptions especially in older cities.


Types of gas meters


Diaphragm/bellows meters

These are the most common type of gas meter, seen in almost all residential and small commercial installations. Within the meter there are two or more chambers formed by movable
diaphragm Diaphragm may refer to: Anatomy * Thoracic diaphragm, a thin sheet of muscle between the thorax and the abdomen * Pelvic diaphragm or pelvic floor, a pelvic structure * Urogenital diaphragm or triangular ligament, a pelvic structure Other * Diap ...
s. With the gas flow directed by internal
valve A valve is a device or natural object that regulates, directs or controls the flow of a fluid (gases, liquids, fluidized solids, or slurries) by opening, closing, or partially obstructing various passageways. Valves are technically fitting ...
s, the chambers alternately fill and expel gas, producing a nearly continuous flow through the meter. As the diaphragms expand and contract, levers connected to cranks convert the linear motion of the diaphragms into rotary motion of a crank shaft which serves as the primary flow element. This shaft can drive an
odometer An odometer or odograph is an instrument used for measuring the distance traveled by a vehicle, such as a bicycle or car. The device may be electronic, mechanical, or a combination of the two ( electromechanical). The noun derives from ancient G ...
-like counter mechanism or it can produce electrical pulses for a flow computer. Diaphragm gas meters are
positive displacement meter A positive displacement meter is a type of flow meter that requires fluid to mechanically displace components in the meter in order for flow measurement. Positive displacement (PD) flow meters measure the volumetric flow rate of a moving fluid or ...
s.


Rotary meters

Rotary meters are highly machined precision instruments capable of handling higher volumes and pressures than diaphragm meters. Within the meter, two figure "8" shaped lobes, the rotors (also known as impellers or pistons), spin in precise alignment. With each turn, they move a specific quantity of gas through the meter. The operating principle is similar to that of a Roots blower. The rotational movement of the crank shaft serves as a primary flow element and may produce electrical pulses for a flow computer or may drive an odometer-like counter.


Turbine meters

Turbine gas meters infer gas volume by determining the speed of the gas moving through the meter. Because the volume of gas is inferred from the flow, it is important that flow conditions are good. A small internal turbine measures the speed of the gas, which is transmitted mechanically to a mechanical or electronic counter. These meters do not impede the flow of gas, but are limited at measuring lower flow rates.


Orifice meters

An orifice gas meter consists of a straight length of pipe inside which a precisely known
orifice plate An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow (in the latter two cases it is often called a '). Description An orifice plate is a thin plate with a hole in it, which is usually placed in ...
creates a pressure drop, thereby affecting flow. Orifice meters are a type of differential meter, all of which infer the rate of gas flow by measuring the pressure difference across a deliberately designed and installed flow disturbance. The gas static pressure, density, viscosity, and temperature must be measured or known in addition to the differential pressure for the meter to accurately measure the fluid. Orifice meters often do not handle a large range of flow rates. They are however accepted and understood in industrial applications since they are easy to field-service and have no moving parts.


Ultrasonic flow meters

Ultrasonic flow meters are more complex than meters that are purely mechanical, as they require significant signal processing and computation capabilities. Ultrasonic meters measure the speed of gas movement by measuring the speed at which sound travels in the gaseous medium within the pipe. American Gas Association covers the proper usage and installation of these meters, and it specifies a standardised speed-of-sound calculation which predicts the speed of sound in a gas with a known pressure, temperature, and composition. The most elaborate types of ultrasonic flow meters average speed of sound over multiple paths in the pipe. The length of each path is precisely measured in the factory. Each path consists of an ultrasonic transducer at one end and a sensor at the other. The meter creates a 'ping' with the transducer and measures the time elapsed before the sensor receives the sonic pulse. Some of these paths point upstream so that the sum of the times of flight of the sonic pulses can be divided by the sum of the flight lengths to provide an average speed of sound in the upstream direction. This speed differs from the speed of sound in the gas by the velocity at which the gas is moving in the pipe. The other paths may be identical or similar, except that the sound pulses travel downstream. The meter then compares the difference between the upstream and downstream speeds to calculate the velocity of gas flow. Ultrasonic meters are high-cost and work best with no liquids present at all in the measured gas, so they are primarily used in high-flow, high-pressure applications such as utility pipeline meter stations, where the gas is always dry and lean, and where small proportional inaccuracies are intolerable due to the large amount of money at stake. The turndown ratio of an ultrasonic meter is probably the largest of any natural gas meter type, and the accuracy and range ability of a high-quality ultrasonic meter is actually greater than that of the turbine meters against which they are proven. Inexpensive varieties of ultrasonic meters are available as clamp-on flow meters, which can be used to measure flow in any diameter of pipe without intrusive modification. Such devices are based on two types of technology: (1) time of flight or transit time; and (2) cross correlation. Both technologies involve transducers that are simply clamped on to the pipe and programmed with the pipe size and schedule and can be used to calculate flow. Such meters can be used to measure almost any dry gas including natural gas, nitrogen, compressed air, and steam. Clamp-on meters are available for measuring liquid flow as well.


Coriolis meters

A
coriolis meter A mass flow meter, also known as an inertial flow meter, is a device that measures mass flow rate of a fluid traveling through a tube. The mass flow rate is the mass of the fluid traveling past a fixed point per unit time. The mass flow meter do ...
is usually one or more pipes with longitudinally or axially displaced section(s) that are excited to vibrate at resonant frequency. Coriolis meters are used with liquids and gases. When the fluid within the displaced section is at rest, both the upstream and downstream portion of the displaced section will vibrate in phase with each other. The frequency of this vibration is determined by the overall density of the pipe (including its contents). This allows the meter to measure the flowing density of the gas in real time. Once the fluid begins to flow, however, the
Coriolis force In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the ...
comes into play. This effect implies a relationship between the phase difference in the vibration of the upstream and downstream sections and the mass flow rate of the fluid contained by the pipe. Again, owing to the amount of inference, analog control and calculation intrinsic to a coriolis meter, the meter is not complete with just its physical components. There are actuation, sensing, electronic, and computational elements that must be present for the meter to function. Coriolis meters can handle a wide range of flow rates and have the unique ability to output mass flow - this gives the highest accuracy of flow measurement currently available for mass flow measurement. Since they measure flowing density, coriolis meters can also infer gas flow rate at flowing conditions. American Gas Association Report No. 11 provides guidelines for obtaining good results when measuring natural gas with a coriolis meter.


Heating value

The volume of gas flow provided by a gas meter is just that, a reading of volume. Gas volume does not take into account the quality of the gas or the amount of heat available when burned. Utility customers are billed according to the heat available in the gas. The quality of the gas is measured and adjusted for in each billing cycle. This is known by several names as the
calorific value The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it. The ''calorific value'' is the total energy releas ...
, heating value, or
therm The therm (symbol, thm) is a non- SI unit of heat energy equal to 100,000 British thermal units (BTU), and approximately megajoules, kilowatt-hours, kilocalories and thermies. One therm is the energy content of approximately of natural gas a ...
value. The calorific value of
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
can be obtained using a process gas
chromatograph In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the ''mobile phase'', which carries it through a system (a ...
, which measures the amount of each constituent of the gas, namely: *
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
*
ethane Ethane ( , ) is an organic chemical compound with chemical formula . At standard temperature and pressure, ethane is a colorless, odorless gas. Like many hydrocarbons, ethane is isolated on an industrial scale from natural gas and as a petroc ...
*
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
*
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simpl ...
*
water vapour (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous pha ...
Additionally, to convert from volume to thermal energy, the
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
and
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
of the gas must be taken into consideration. Pressure is generally not a problem; the meter is simply installed immediately downstream of a
pressure regulator A pressure regulator is a valve that controls the pressure of a fluid or gas to a desired value, using negative feedback from the controlled pressure. Regulators are used for gases and liquids, and can be an integral device with a pressure setti ...
and is calibrated to read accurately at that pressure. Pressure compensation then occurs in the utility's billing system. Varying temperature cannot be handled as easily, but some meters are designed with built-in temperature compensation to keep them reasonably accurate over their designed temperature range. Others are corrected for temperature electronically.


Indicating devices

Any type of gas meter can be obtained with a wide variety of indicators. The most common are indicators that use multiple clock hands (pointer style) or digital readouts similar to an
odometer An odometer or odograph is an instrument used for measuring the distance traveled by a vehicle, such as a bicycle or car. The device may be electronic, mechanical, or a combination of the two ( electromechanical). The noun derives from ancient G ...
, but remote readouts of various types are also becoming popular — see Automatic meter reading and
Smart meter A smart meter is an electronic device that records information such as consumption of electric energy, voltage levels, current, and power factor. Smart meters communicate the information to the consumer for greater clarity of consumption be ...
.


Accuracy

Gas meters are required to register the volume of gas consumed within an acceptable degree of accuracy. Any significant error in the registered volume can represent a loss to the gas supplier, or the consumer being overbilled. The accuracy is generally laid down in statute for the location in which the meter is installed. Statutory provisions should also specify a procedure to be followed should the accuracy be disputed. In the UK, the permitted error for a gas meter manufactured prior to the European Measuring Instruments Directive is ±2%. However, the European Measuring Instrument Directive has harmonised gas meter errors across Europe and consequently meters manufactured since the directive came into force must read within ±3%. Meters whose accuracy is disputed by the customer have to be removed for testing by an approved meter examiner. If the meter is found to be reading outside of the prescribed limits, the supplier has to refund the consumer for gas incorrectly measured while that consumer had that meter (but not vice versa). Any refund is limited to the previous six years. If the meter cannot be tested or its reading is unreliable, the consumer and supplier have to negotiate a settlement. If the meter is found to be reading within limits, the consumer has to pay the costs of testing (and pay any outstanding charges). This contrasts with the position on electric meters, where the test is free and a refund is only given if the date that the meter started to read inaccurately can be determined.


Remote readouts

Remote reading is becoming popular for gas meters. It is often done through an electronic pulse output mounted on the meter. There are different styles available but most common is a contact closure switch.


Flow measurement calculations

Turbine, rotary, and diaphragm meters can be compensated using a calculation specified in American Gas Association Report No. 7. This standardised calculation compensates the quantity of volume as measured to quantity of volume at a set of base conditions. The AGA 7 calculation itself is a simple ratio and is, in essence, a density correction approach to translating the volume or rate of gas at flowing conditions to a volume or rate at base conditions. Orifice meters are a very commonly used type of meter, and because of their widespread use, the characteristics of gas flow through an orifice meter have been closely studied. American Gas Association Report No. 3 deals with a broad range of issues relating to orifice metering of natural gas, and it specifies an algorithm for calculating natural gas flow rates based on the differential pressure, static pressure, and temperature of a gas with a known composition. These calculations depend in part on the
ideal gas law The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first s ...
and also require a gas compressibility calculation in order to account for the fact that real gases are not ideal. A very commonly used compressibility calculation is American Gas Association Report No. 8, detail characterization.


Thread sizing standards

Residential, commercial and industrial gas meters have their own standard thread sizes. The gas meter is connected to customer piping through a swivel and nut, which has a dedicated set of thread sizes. These thread sizes were originally named for the amount of gas designed to flow through them in terms of gas lamps, for example a 30-Lt. meter can provide enough gas for 30 lights and was referred to in the late 19th century as a 30-light-gas-meter. These sizes are typically 10Lt, 20Lt, 30Lt, 45Lt, or 60Lt, though smaller and larger sizes are available. The thread sizes are slightly, about , larger than the nearest size NPT size, in order to accommodate the appropriate inner diameter within the swivel.List of gas meter threads: http://www.gasproductssales.com/wp-content/uploads/2017/07/swivel-nuts.pdf


See also

* Automatic Meter Reading * Flow conditioning#Effects on flow measurement devices *
Electricity meter North American domestic analog electricity meter. Electricity meter with transparent plastic case (Israel) North American domestic electronic electricity meter An electricity meter, electric meter, electrical meter, energy meter, or kilowa ...
*
Flow measurement Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below: * a) Obstruction type (differential pressure or variable area ...
* Gas flow computer * Gas meter prover *
Meter-Bus M-Bus or Meter-Bus is a European standard (EN 13757-2 physical and link layer, EN 13757-3 application layer) for the remote reading of water, gas or electricity meters. M-Bus is also usable for other types of consumption meters, such as heating ...
*
Julius Pintsch Carl Friedrich Julius Pintsch (6 January 1815 – 20 January 1884) was a German tinsmith, manufacturer and inventor who is primarily known for the invention of Pintsch gas. The gas, distilled from naphtha or other petroleum products, was w ...
*
Smart meter A smart meter is an electronic device that records information such as consumption of electric energy, voltage levels, current, and power factor. Smart meters communicate the information to the consumer for greater clarity of consumption be ...
* Thermal mass flow meter * Turnaround document (way of collecting data from) *
Utility submeter Utility sub-metering is a system that allows a landlord, property management firm, condominium association, homeowners association, or other multi-tenant property to bill tenants for individual measured utility usage. The approach makes use of in ...
*
Water meter Water metering is the practice of measuring water use. Water meters measure the volume of water used by residential and commercial building units that are supplied with water by a public water supply system. They are also used to determine flow ...


References

{{DEFAULTSORT:Gas Meter Flow meters Gas technologies Natural gas safety Public services