HOME

TheInfoList



OR:

Galling is a form of wear caused by adhesion between sliding surfaces. When a material galls, some of it is pulled with the contacting surface, especially if there is a large amount of force compressing the surfaces together. Galling is caused by a combination of
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
and
adhesion Adhesion is the tendency of dissimilar particles or surfaces to cling to one another ( cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another). The forces that cause adhesion and cohesion can ...
between the surfaces, followed by slipping and tearing of
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pattern ...
beneath the surface. This will generally leave some material stuck or even friction welded to the adjacent surface, whereas the galled material may appear gouged with balled-up or torn lumps of material stuck to its surface. Galling is most commonly found in
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
surfaces that are in sliding contact with each other. It is especially common where there is inadequate
lubrication Lubrication is the process or technique of using a lubricant to reduce friction and wear and tear in a contact between two surfaces. The study of lubrication is a discipline in the field of tribology. Lubrication mechanisms such as fluid-lubric ...
between the surfaces. However, certain metals will generally be more prone to galling, due to the atomic structure of their crystals. For example,
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
is a metal that will gall very easily, whereas annealed (softened)
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistan ...
is slightly more resistant to galling. Steel that is fully hardened is very resistant to galling. Galling is a common problem in most applications where metals slide while in contact with other metals. This can happen regardless of whether the metals are the same or of different kinds.
Alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductili ...
s such as
brass Brass is an alloy of copper (Cu) and zinc (Zn), in proportions which can be varied to achieve different mechanical, electrical, and chemical properties. It is a substitutional alloy: atoms of the two constituents may replace each other wi ...
and
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids suc ...
are often chosen for bearings, bushings, and other sliding applications because of their resistance to galling, as well as other forms of mechanical abrasion.


Introduction

Galling is adhesive
wear Wear is the damaging, gradual removal or deformation of material at solid surfaces. Causes of wear can be mechanical (e.g., erosion) or chemical (e.g., corrosion). The study of wear and related processes is referred to as tribology. Wear in ...
that is caused by microscopic transfer of material between metallic surfaces, during transverse motion (sliding). It occurs frequently whenever metal surfaces are in contact, sliding against each other, especially with poor lubrication. It often occurs in high load, low speed applications, but also in high-speed applications with very little load. Galling is a common problem in
sheet metal forming Sheet metal is metal formed into thin, flat pieces, usually by an industrial process. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes. Thicknesses can vary significantly; e ...
, bearings and pistons in
engine An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power ...
s,
hydraulic cylinder A hydraulic cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has many applications, notably in construction equipment ( engineering vehicles ...
s,
air motor A pneumatic motor (air motor), or compressed air engine, is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed air energy to mechanical work through either linear or rotary ...
s, and many other industrial operations. Galling is distinct from gouging or scratching in that it involves the visible transfer of material as it is adhesively pulled ( mechanically spalled) from one surface, leaving it stuck to the other in the form of a raised lump (gall). Unlike other forms of wear, galling is usually not a gradual process, but occurs quickly and spreads rapidly as the raised lumps induce more galling. It can often occur in screws and bolts, causing the threads to seize and tear free from either the fastener or the hole. In extreme cases, the bolt may seize without stripping the threads, which can lead to breakage of the fastener or the tool turning it.
Threaded insert A threaded insert, also known as a threaded bushing, is a fastener element that is inserted into an object to add a threaded hole. They may be used to repair a stripped threaded hole, provide a durable threaded hole in a soft material, place a thr ...
s of hardened steel are often used in metals like aluminium or
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's r ...
that can gall easily. Galling requires two properties common to most metals, cohesion through metallic-bonding attractions and plasticity (the ability to deform without breaking). The tendency of a material to gall is affected by the
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile str ...
of the material. Typically, hardened materials are more resistant to galling whereas softer materials of the same type will gall more readily. The propensity of a material to gall is also affected by the specific arrangement of the atoms, because crystals arranged in a
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
(FCC) lattice will usually allow material-transfer to a greater degree than a
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
(BCC). This is because a face-centered cubic has a greater tendency to produce
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to s ...
s in the crystal lattice, which are defects that allow the lattice to shift, or "cross-slip," making the metal more prone to galling. However, if the metal has a high number of stacking faults (a difference in stacking sequence between atomic planes) it will be less apt to cross-slip at the dislocations. Therefore, a material's resistance to galling is usually determined by its
stacking-fault energy The stacking-fault energy (SFE) is a materials property on a very small scale. It is noted as γSFE in units of energy per area. A stacking fault is an interruption of the normal stacking sequence of atomic planes in a close-packed crystal structu ...
. A material with high stacking-fault energy, such as aluminium or
titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion i ...
, will be far more susceptible to galling than materials with low stacking-fault energy, like
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
,
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids suc ...
, or
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
. Conversely, materials with a hexagonal close packed (HCP) structure and a high ''c/a'' ratio, such as
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
-based
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductili ...
s, are extremely resistant to galling. Galling occurs initially with material transfer from individual grains, on a microscopic scale, which become stuck or even diffusion welded to the adjacent surface. This transfer can be enhanced if one or both metals form a thin layer of hard oxides with high coefficients of friction, such as those found on aluminum or stainless-steel. As the lump grows it pushes against the adjacent material and begins forcing them apart, concentrating a majority of the friction heat-energy into a very small area. This in turn causes more adhesion and material build-up. The localized heat increases the plasticity of the galled surface, deforming the metal, until the lump breaks through the surface and begins plowing up large amounts of material from the galled surface. Methods of preventing galling include the use of
lubricant A lubricant (sometimes shortened to lube) is a substance that helps to reduce friction between surfaces in mutual contact, which ultimately reduces the heat generated when the surfaces move. It may also have the function of transmitting forces, t ...
s like grease and
oil An oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) & lipophilic (mixes with other oils). Oils are usually flammable and surface active. Most oils are unsaturated ...
, low-friction coatings and thin-film deposits like
molybdenum disulfide Molybdenum disulfide (or moly) is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is . The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as the mineral molybdeni ...
or
titanium nitride Titanium nitride (TiN; sometimes known as Tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface prop ...
, and increasing the surface hardness of the metals using processes such as
case hardening Case-hardening or surface hardening is the process of hardening the surface of a metal object while allowing the metal deeper underneath to remain soft, thus forming a thin layer of harder metal at the surface. For iron or steel with low carbon ...
and induction hardening.


Mechanism

In engineering science and in other technical aspects, the term galling is widespread. The influence of acceleration in the contact zone between materials has been mathematically described and correlated to the exhibited friction mechanism found in the tracks during empiric observations of the galling phenomenon. Due to problems with previous incompatible definitions and test methods, better means of measurements in coordination with greater understanding of the involved frictional mechanisms have led to the attempt to standardize or redefine the term galling to enable a more generalized use.
ASTM International ASTM International, formerly known as American Society for Testing and Materials, is an international standards organization that develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, ...
has formulated and established a common definition for the technical aspect of the galling phenomenon in the ASTM G40 standard: "Galling is a form of surface damage arising between sliding solids, distinguished by microscopic, usually localized, roughening and creation of protrusions (e.g.: lumps) above the original surface". When two metallic surfaces are pressed against each other, the initial interaction and the mating points are the
asperities In materials science, asperity, defined as "unevenness of surface, roughness, ruggedness" (from the Latin ''asper''—"rough"), has implications (for example) in physics and seismology. Smooth surfaces, even those polished to a mirror finish, a ...
, or high points, found on each surface. An asperity may penetrate the opposing surface if there is a converging contact and relative movement. The contact between the surfaces initiates
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
or
plastic deformation In engineering, deformation refers to the change in size or shape of an object. ''Displacements'' are the ''absolute'' change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain ...
and induces pressure and energy in a small area called the contact zone. The elevation in pressure increases the
energy density In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extrac ...
and heat level within the deformed area. This leads to greater
adhesion Adhesion is the tendency of dissimilar particles or surfaces to cling to one another ( cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another). The forces that cause adhesion and cohesion can ...
between the surfaces which initiate material transfer, galling build-up, lump growth, and creation of protrusions above the original surface. If the lump (or protrusion of transferred material to one surface) grows to a height of several
micrometers The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
, it may penetrate the opposing surface oxide-layer and cause damage to the underlying material. Damage in the bulk material is a prerequisite for plastic flow that is found in the deformed volume which surrounds the lump. The geometry and speed of the lump defines how the flowing material will be transported, accelerated, and decelerated around the lump. This material flow is critical when defining the contact pressure, energy density, and developed temperature during sliding. The mathematical function describing acceleration and deceleration of flowing material is thereby defined by the geometrical constraints, deduced or given by the lump's surface contour. If the right conditions are met, such as geometric constraints of the lump, an accumulation of energy can cause a clear change in the materials contact and plastic behaviour; generally this increases adhesion and the friction force needed for further movement. In sliding friction, increased
compressive stress In long, slender structural elements — such as columns or truss bars — an increase of compressive force ''F'' leads to structural failure due to buckling at lower stress than the compressive strength. Compressive stress has stress units (fo ...
is proportionally equal to a rise in
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potenti ...
and temperature within the contact zone. The reasons for accumulation of energy during sliding can be a reduction of energy loss away from the contact zone, due to a small surface area on the surface boundary thus low heat conductivity. Another reason is the energy that is continuously forced into the metals, which is a product of acceleration and pressure. In cooperation, these mechanisms allow a constant accumulation of energy causing increased energy density and temperature in the contact zone during sliding. The process and contact can be compared to cold welding or
friction welding Friction welding (FRW) is a solid-state welding process that generates heat through mechanical friction between workpieces in relative motion to one another, with the addition of a lateral force called "upset" to plastically displace and fuse the m ...
, because cold welding is not truly cold and the fusing points exhibit an increase in temperature and energy density derived from applied pressure and plastic deformation in the contact zone.


Incidence and location

Galling is often found between metallic surfaces where direct contact and relative motion have occurred.
Sheet metal Sheet metal is metal formed into thin, flat pieces, usually by an industrial process. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes. Thicknesses can vary significantly; ex ...
forming, thread manufacturing and other industrial operations may include moving parts or contact surfaces made of stainless steel, aluminium, titanium, and other metals whose natural development of an external oxide layer through passivation increases their corrosion resistance but renders them particularly susceptible to galling. In metalworking that involves cutting (primarily turning and milling), galling is often used to describe a wear phenomenon which occurs when cutting soft metal. The work material is transferred to the cutter and develops a "lump". The developed lump changes the contact behavior between the two surfaces, which usually increases adhesion, resistance to further cutting, and, due to created vibrations, can be heard as a distinct sound. Galling often occurs with aluminium compounds and is a common cause of tool breakdown. Aluminium is a ductile metal, which means it possesses the ability for plastic flow with relative ease, which presupposes a relatively consistent and large plastic zone. High ductility and flowing material can be considered a general prerequisite for excessive material transfer and galling because frictional heating is closely linked to the structure of plastic zones around penetrating objects. Galling can occur even at relatively low loads and velocities, because it is the real energy-density in the system that induces a phase transition, which often leads to an increase in material transfer and higher friction.


Prevention

Generally there are two major frictional systems which affect adhesive wear or galling: solid surface contact and lubricated contact. In terms of prevention, they work in dissimilar ways and set different demands on the surface structure, alloys and crystal matrix used in the materials. ''In solid surface contact'' or unlubricated conditions, the initial contact is characterised by interaction between asperities and the exhibition of two different sorts of attraction: cohesive surface-energy or the molecules connect and adhere the two surfaces together, notably even if they are separated by a measurable distance. Direct contact and plastic deformation generates another type of attraction through the constitution of a plastic zone with flowing material where induced energy, pressure and temperature allow bonding between the surfaces on a much larger scale than cohesive surface-energy. In metallic compounds and sheet metal forming, the asperities are usually oxides and the plastic deformation mostly consists of
brittle fracture Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displa ...
, which presupposes a very small plastic zone. The accumulation of energy and temperature is low due to the discontinuity in the fracture mechanism. However, during the initial asperity/asperity contact, wear debris or bits and pieces from the asperities adhere to the opposing surface, creating microscopic, usually localized, roughening and creation of protrusions (in effect lumps) above the original surface. The transferred wear debris and lumps penetrate the opposing oxide surface layer and cause damage to the underlying bulk material, plowing it forward. This allows continuous plastic deformation, plastic flow, and accumulation of energy and temperature. The prevention of adhesive material-transfer is accomplished by the following or similar approaches: * Low temperature carburizing treatments such as Kolsterising can eliminate galling in austenitic stainless-steels by increasing surface hardness up to 1200 HV0.05 (depending on base material and surface conditions).''Surface Hardening of Stainless Steels by Kolsterising'' by Gümpel P. -- University of Applied Science, Konstanz Germany AIJSTPME (2012) 5(1): 11-18 (PDF)
/ref> * Less cohesive or chemical attraction between surface atoms or molecules. * Avoiding continuous plastic-deformation and plastic flow, for example through a thicker oxide layer on the subject material in sheet-metal forming (SMF). *
Coating A coating is a covering that is applied to the surface of an object, usually referred to as the substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. Pow ...
s deposited on the SMF work tool, such as
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (subst ...
(CVD) or
physical vapor deposition Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polym ...
(PVD) and titanium nitride (TiN) or
diamond-like carbon Diamond-like carbon (DLC) is a class of amorphous carbon material that displays some of the typical properties of diamond. DLC is usually applied as coatings to other materials that could benefit from such properties. DLC exists in seven diff ...
coatings exhibit low chemical reactivity even in high energy frictional contact, where the subject material's protective oxide layer is breached, and the frictional contact is distinguished by continuous plastic deformation and plastic flow. ''Lubricated contact'' places other demands on the surface structure of the materials involved, and the main issue is to retain the protective
lubrication Lubrication is the process or technique of using a lubricant to reduce friction and wear and tear in a contact between two surfaces. The study of lubrication is a discipline in the field of tribology. Lubrication mechanisms such as fluid-lubric ...
thickness and avoid plastic deformation. This is important because plastic deformation raises the temperature of the oil or lubrication fluid and changes the viscosity. Any eventual material transfer or creation of protrusions above the original surface will also reduce the ability to retain a protective lubrication thickness. A proper protective lubrication thickness can be assisted or retained by: * Surface cavities or small holes can create a favourable geometric situation for the oil to retain a protective lubrication thickness in the contact zone. * Cohesive forces on the surface can increase the chemical attraction between the surface and lubricants, and enhance the lubrication thickness. *
Oil additive Oil additives are chemical compounds that improve the lubricant performance of base oil (or oil "base stock"). The manufacturer of many different oils can utilize the same base stock for each formulation and can choose different additives for each ...
s may reduce the tendency for galling or adhesive wear.


See also

* * * *


References

{{Reflist Tribology Materials degradation Mechanical engineering Materials science Surface science de:Fressen (Technik)