fundamental theorem of curves
   HOME

TheInfoList



OR:

In
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, the fundamental theorem of space curves states that every regular
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
in three-dimensional space, with non-zero
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
, has its
shape A shape or figure is a graphics, graphical representation of an object or its external boundary, outline, or external Surface (mathematics), surface, as opposed to other properties such as color, Surface texture, texture, or material type. A pl ...
(and size or scale) completely determined by its curvature and
torsion Torsion may refer to: Science * Torsion (mechanics), the twisting of an object due to an applied torque * Torsion of spacetime, the field used in Einstein–Cartan theory and ** Alternatives to general relativity * Torsion angle, in chemistry Bio ...
..


Use

A curve can be described, and thereby defined, by a pair of
scalar field In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
s: curvature \kappa and torsion \tau, both of which depend on some parameter which parametrizes the curve but which can ideally be the
arc length ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * ...
of the curve. From just the curvature and torsion, the vector fields for the tangent, normal, and binormal vectors can be derived using the
Frenet–Serret formulas In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space \mathbb^, or the geometric properties of the curve itself irrespective ...
. Then,
integration Integration may refer to: Biology *Multisensory integration *Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technology, ...
of the tangent field (done numerically, if not analytically) yields the curve.


Congruence

If a pair of curves are in different positions but have the same curvature and torsion, then they are
congruent Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In mod ...
to each other.


See also

*
Differential geometry of curves Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the sy ...
*
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...


References


Further reading

* {{DEFAULTSORT:Fundamental Theorem Of Curves Differential geometry Theorems about curves Theorems in differential geometry