HOME

TheInfoList



OR:

A functional group is merely a set of species, or collection of organisms, that share alike characteristics within a community. Ideally, the lifeforms would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an
ecological niche In ecology, a niche is the match of a species to a specific environmental condition. Three variants of ecological niche are described by It describes how an organism or population responds to the distribution of resources and competitors (for ...
, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding alike predators and sharing meals.


Scientific investigation

Rather than the idea of this concept based upon a set of theories, functional groups are directly observed and determined by research specialists. It is important that this information is witnessed first-hand in order to state as usable evidence. Behavior and overall contribution to others are common key points to look for. Individuals use the corresponding perceived traits to further link genetic profiles to one another. Although, the life-forms themselves are different, variables based upon overall function and performance are interchangeable. These groups share an indistinguishable part within their energy flow, providing a key position within
food chain A food chain is a linear network of links in a food web starting from producer organisms (such as grass or algae which produce their own food via photosynthesis) and ending at an apex predator species (like grizzly bears or killer whales), de ...
s and relationships within environment(s). What is an ecosystem and why is that important? An ecosystem is the biological organization that defines and expands on various environment factors-
abiotic In biology and ecology, abiotic components or abiotic factors are non-living chemical and physical parts of the environment that affect living organisms and the functioning of ecosystems. Abiotic factors and the phenomena associated with them under ...
and biotic, that relate to simultaneous interaction. Whether it be a producer or relative consumer, each and every piece of life maintains a critical position in the ongoing survival rates of its own surroundings. As it pertains, a functional groups shares a very specific role within any given ecosystem and the process of cycling vitality.


Categories

There are generally two types of functional groups that range between flora and specific animal populations. Groups that relate to vegetation science, or flora, are known as plant functional types. Also referred to as PFT for short, those of such often share identical photosynthetic processes and require comparable nutrients. As an example, plants that undergo photosynthesis share an identical purpose in producing chemical energy for others. In contrast, those within the animal science range are called guilds, typically sharing feeding types. This could be easily simplified when viewing
trophic level The trophic level of an organism is the position it occupies in a food web. A food chain is a succession of organisms that eat other organisms and may, in turn, be eaten themselves. The trophic level of an organism is the number of steps it ...
s. Examples include primary consumers, secondary consumers, tertiary consumers, and quaternary consumers.


Diversity

Functional diversity is often referred to as the "value and the range of those species and organismal traits that influence
ecosystem function An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
ing”. Traits of an organism that make it unique, for example, way it moves, gathers resources, reproduces, or the time of year it is active add to the overall diversity of an entire
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syst ...
, and therefore enhance the overall function, or productivity, of that ecosystem. Functional diversity increases the overall productivity of an ecosystem by allowing for an increase in niche occupation. Species have evolved to be more diverse through each epoch of time, with plants and insects having some of the most diverse families discovered thus far. The unique traits of an organism can allow a new niche to be occupied, allow for better defense against predators, and potentially lead to specialization. Organismal level functional diversity, which adds to the overall functional diversity of an ecosystem, is important for conservation efforts, especially in systems used for human consumption. Functional diversity can be difficult to measure accurately, but when done correctly, it provides useful insight to the overall function and stability of an ecosystem.


Redundancy

Functional redundancy refers to the phenomenon that species in the same ecosystem fill similar roles, which results in a sort of "insurance" in the ecosystem. Redundant species can easily do the job of a similar species from the same functional niche. This is possible because similar species have adapted to fill the same niche overtime. Functional redundancy varies across ecosystems and can vary from year to year depending on multiple factors including habitat availability, overall species diversity, competition among species for resources, and
anthropogenic Anthropogenic ("human" + "generating") is an adjective that may refer to: * Anthropogeny, the study of the origins of humanity Counterintuitively, anthropogenic may also refer to things that have been generated by humans, as follows: * Human i ...
influence. This variation can lead to a fluctuation in overall ecosystem production. It is not always known how many species occupy a functional niche, and how much, if any, redundancy is occurring in each niche in an ecosystem. It is hypothesized that each important functional niche is filled by multiple species. Similar to functional diversity, there is no one clear method for calculating functional redundancy accurately, which can be problematic. One method is to account for the number of species occupying a functional niche, as well as the abundance of each species. This can indicate how many total individuals in an ecosystem are performing one function.


Effects on conservation

Studies relating to functional diversity and redundancy occur in a large proportion of conservation and ecological research. As the human population increases, the need for ecosystem function subsequently increases. In addition,
habitat destruction Habitat destruction (also termed habitat loss and habitat reduction) is the process by which a natural habitat becomes incapable of supporting its native species. The organisms that previously inhabited the site are displaced or dead, thereby ...
and modification continue to increase, and suitable habitat for many species continues to decrease, this research becomes more important. As the human population continues to expand, and urbanization is on the rise, native and natural landscapes are disappearing, being replaced with modified and managed land for human consumption. Alterations to landscapes are often accompanied with negative side effects including fragmentation, species losses, and nutrient runoff, which can effect the stability of an ecosystem, productivity of an ecosystem, and the functional diversity and functional redundancy by decreasing species diversity. It has been shown that intense land use affects both the species diversity, and functional overlap, leaving the ecosystem and organisms in it vulnerable. Specifically, bee species, which we rely on for pollination services, have both lower functional diversity and species diversity in managed landscapes when compared to natural habitats, indicating that anthropogenic change can be detrimental for organismal functional diversity, and therefore overall ecosystem functional diversity. Additional research demonstrated that the functional redundancy of herbaceous insects in streams varies due to stream velocity, demonstrating that environmental factors can alter functional overlap. When conservation efforts begin, it is still up for debate whether preserving specific species, or functional traits is a more beneficial approach for the preservation of ecosystem function. Higher species, diversity can lead to an increase in overall ecosystem productivity, but does not necessarily insure the security of functional overlap. In ecosystems with high redundancy, losing a species (which lowers overall functional diversity) will not always lower overall ecosystem function due to high functional overlap, and thus in this instance it is most important to conserve a group, rather than an individual. In ecosystems with dominant species, which contribute to a majority of the
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bio ...
output, it may be more beneficial to conserve this single species, rather than a functional group. The ecological concept of keystone species was redefined based on the presence of species with non redundant trophic dynamics with measured biomass dominance within functional groups, which highlights the conservation benefits of protecting both species and their respective functional group.


Challenge

Understanding functional diversity and redundancy, and the roles each play in conservation efforts is often hard to accomplish because the tools with which we measure diversity and redundancy cannot be used interchangeably. Due to this, recent empirical work most often analyzes the effects of either functional diversity or functional redundancy, but not both. This does not create a complete picture of the factors influencing ecosystem production. In ecosystems with similar and diverse vegetation, functional diversity is more important for overall
ecosystem stability In ecology, an ecosystem is said to possess ecological stability (or equilibrium) if it is capable of returning to its equilibrium state after a perturbation (a capacity known as resilience) or does not experience unexpected large changes in its c ...
and productivity. Yet, in contrast, functional diversity of native bee species in highly managed landscapes provided evidence for higher functional redundancy leading to higher fruit production, something humans rely heavily on for food consumption. A recent paper has stated that until a more accurate measuring technique is universally used, it is too early to determine which species, or functional groups, are most vulnerable and susceptible to extinction. Overall, understanding how extinction affects ecosystems, and which traits are most vulnerable can protect ecosystems as a whole.


References

{{Reflist Ecology