HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
and
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
, a frame of reference (or reference frame) is an abstract coordinate system whose
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * Origin (comics), ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * The Origin (Buffy comic), ''The Origin'' (Bu ...
, orientation, and scale are specified by a set of reference points― geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers). For ''n'' dimensions, reference points are sufficient to fully define a reference frame. Using rectangular Cartesian coordinates, a reference frame may be defined with a reference point at the origin and a reference point at one unit distance along each of the ''n'' coordinate axes. In Einsteinian relativity, reference frames are used to specify the relationship between a moving observer and the phenomenon under observation. In this context, the term often becomes observational frame of reference (or observational reference frame), which implies that the observer is at rest in the frame, although not necessarily located at its
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * Origin (comics), ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * The Origin (Buffy comic), ''The Origin'' (Bu ...
. A relativistic reference frame includes (or implies) the
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spat ...
, which does not equate across different reference frames moving relatively to each other. The situation thus differs from Galilean relativity, in which all possible coordinate times are essentially equivalent.


Definition

The need to distinguish between the various meanings of "frame of reference" has led to a variety of terms. For example, sometimes the type of coordinate system is attached as a modifier, as in ''Cartesian frame of reference''. Sometimes the state of motion is emphasized, as in ''
rotating frame of reference A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only ...
''. Sometimes the way it transforms to frames considered as related is emphasized as in '' Galilean frame of reference''. Sometimes frames are distinguished by the scale of their observations, as in ''macroscopic'' and ''microscopic frames of reference''.The distinction between macroscopic and microscopic frames shows up, for example, in electromagnetism where constitutive relations of various time and length scales are used to determine the current and charge densities entering
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
. See, for example, . These distinctions also appear in thermodynamics. See .
In this article, the term ''observational frame of reference'' is used when emphasis is upon the ''state of motion'' rather than upon the coordinate choice or the character of the observations or observational apparatus. In this sense, an observational frame of reference allows study of the effect of motion upon an entire family of coordinate systems that could be attached to this frame. On the other hand, a ''coordinate system'' may be employed for many purposes where the state of motion is not the primary concern. For example, a coordinate system may be adopted to take advantage of the symmetry of a system. In a still broader perspective, the formulation of many problems in physics employs '' generalized coordinates'', '' normal modes'' or '' eigenvectors'', which are only indirectly related to space and time. It seems useful to divorce the various aspects of a reference frame for the discussion below. We therefore take observational frames of reference, coordinate systems, and observational equipment as independent concepts, separated as below: * An observational frame (such as an inertial frame or
non-inertial frame of reference A non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion ar ...
) is a physical concept related to state of motion. * A coordinate system is a mathematical concept, amounting to a choice of language used to describe observations. In very general terms, a coordinate system is a set of arcs ''x''i = ''x''i (''t'') in a complex Lie group; see . Less abstractly, a coordinate system in a space of n-dimensions is defined in terms of a basis set of vectors ; see As such, the coordinate system is a mathematical construct, a language, that may be related to motion, but has no necessary connection to motion. Consequently, an observer in an observational frame of reference can choose to employ any coordinate system (Cartesian, polar, curvilinear, generalized, …) to describe observations made from that frame of reference. A change in the choice of this coordinate system does not change an observer's state of motion, and so does not entail a change in the observer's ''observational'' frame of reference. This viewpoint can be found elsewhere as well. Which is not to dispute that some coordinate systems may be a better choice for some observations than are others. * Choice of what to measure and with what observational apparatus is a matter separate from the observer's state of motion and choice of coordinate system.


Coordinate systems

Although the term "coordinate system" is often used (particularly by physicists) in a nontechnical sense, the term "coordinate system" does have a precise meaning in mathematics, and sometimes that is what the physicist means as well. A coordinate system in mathematics is a facet of
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
or of
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
, in particular, a property of manifolds (for example, in physics, configuration spaces or phase spaces).According to Hawking and Ellis: "A manifold is a space locally similar to Euclidean space in that it can be covered by coordinate patches. This structure allows differentiation to be defined, but does not distinguish between different coordinate systems. Thus, the only concepts defined by the manifold structure are those that are independent of the choice of a coordinate system." A mathematical definition is: ''A connected
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the ma ...
''M'' is called an ''n''-dimensional manifold if each point of ''M'' is contained in an open set that is homeomorphic to an open set in Euclidean ''n''-dimensional space.''
The
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
of a point r in an ''n''-dimensional space are simply an ordered set of ''n'' numbers:Se
Encarta definition
2009-10-31.
: \mathbf = ^1,\ x^2,\ \dots,\ x^n In a general Banach space, these numbers could be (for example) coefficients in a functional expansion like a Fourier series. In a physical problem, they could be
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
coordinates or normal mode amplitudes. In a robot design, they could be angles of relative rotations, linear displacements, or deformations of joints. Here we will suppose these coordinates can be related to a Cartesian coordinate system by a set of functions: : x^j = x^j (x,\ y,\ z,\ \dots),\quad j = 1,\ \dots,\ n, where ''x'', ''y'', ''z'', ''etc.'' are the ''n'' Cartesian coordinates of the point. Given these functions, coordinate surfaces are defined by the relations: : x^j (x, y, z, \dots) = \mathrm,\quad j = 1,\ \dots,\ n. The intersection of these surfaces define coordinate lines. At any selected point, tangents to the intersecting coordinate lines at that point define a set of basis vectors at that point. That is: : \mathbf_i(\mathbf) = \lim_ \frac,\quad i = 1,\ \dots,\ n, which can be normalized to be of unit length. For more detail see curvilinear coordinates. Coordinate surfaces, coordinate lines, and
basis vectors In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as componen ...
are components of a coordinate system. If the basis vectors are orthogonal at every point, the coordinate system is an orthogonal coordinate system. An important aspect of a coordinate system is its metric tensor ''gik'', which determines the
arc length ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * ...
''ds'' in the coordinate system in terms of its coordinates: : (ds)^2 = g_\ dx^i\ dx^k, where repeated indices are summed over. As is apparent from these remarks, a coordinate system is a mathematical construct, part of an axiomatic system. There is no necessary connection between coordinate systems and physical motion (or any other aspect of reality). However, coordinate systems can include time as a coordinate, and can be used to describe motion. Thus, Lorentz transformations and Galilean transformations may be viewed as coordinate transformations.


Observational frame of reference

An observational frame of reference, often referred to as a ''physical frame of reference'', a ''frame of reference'', or simply a ''frame'', is a physical concept related to an observer and the observer's state of motion. Here we adopt the view expressed by Kumar and Barve: an observational frame of reference is characterized ''only by its state of motion''.See However, there is lack of unanimity on this point. In special relativity, the distinction is sometimes made between an ''observer'' and a ''frame''. According to this view, a ''frame'' is an ''observer'' plus a coordinate lattice constructed to be an orthonormal right-handed set of spacelike vectors perpendicular to a timelike vector. See Doran.. This restricted view is not used here, and is not universally adopted even in discussions of relativity.For example, Møller states: "Instead of Cartesian coordinates we can obviously just as well employ general curvilinear coordinates for the fixation of points in physical space.…we shall now introduce general "curvilinear" coordinates ''x''i in four-space…." In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
the use of general coordinate systems is common (see, for example, the Schwarzschild solution for the gravitational field outside an isolated sphere). There are two types of observational reference frame: inertial and non-inertial. An inertial frame of reference is defined as one in which all laws of physics take on their simplest form. In
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
these frames are related by Lorentz transformations, which are parametrized by rapidity. In Newtonian mechanics, a more restricted definition requires only that Newton's first law holds true; that is, a Newtonian inertial frame is one in which a free particle travels in a straight line at constant
speed In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quant ...
, or is at rest. These frames are related by Galilean transformations. These relativistic and Newtonian transformations are expressed in spaces of general dimension in terms of representations of the Poincaré group and of the
Galilean group In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rota ...
. In contrast to the inertial frame, a non-inertial frame of reference is one in which fictitious forces must be invoked to explain observations. An example is an observational frame of reference centered at a point on the Earth's surface. This frame of reference orbits around the center of the Earth, which introduces the fictitious forces known as the Coriolis force,
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is paralle ...
, and gravitational force. (All of these forces including gravity disappear in a truly inertial reference frame, which is one of free-fall.)


Measurement apparatus

A further aspect of a frame of reference is the role of the measurement apparatus (for example, clocks and rods) attached to the frame (see Norton quote above). This question is not addressed in this article, and is of particular interest in
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, where the relation between observer and measurement is still under discussion (see
measurement problem In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key s ...
). In physics experiments, the frame of reference in which the laboratory measurement devices are at rest is usually referred to as the laboratory frame or simply "lab frame." An example would be the frame in which the detectors for a particle accelerator are at rest. The lab frame in some experiments is an inertial frame, but it is not required to be (for example the laboratory on the surface of the Earth in many physics experiments is not inertial). In particle physics experiments, it is often useful to transform energies and momenta of particles from the lab frame where they are measured, to the center of momentum frame "COM frame" in which calculations are sometimes simplified, since potentially all kinetic energy still present in the COM frame may be used for making new particles. In this connection it may be noted that the clocks and rods often used to describe observers' measurement equipment in thought, in practice are replaced by a much more complicated and indirect metrology that is connected to the nature of the
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often ...
, and uses atomic clocks that operate according to the standard model and that must be corrected for gravitational time dilation. (See second, meter and kilogram). In fact, Einstein felt that clocks and rods were merely expedient measuring devices and they should be replaced by more fundamental entities based upon, for example, atoms and molecules.See .


Generalization

The discussion is taken beyond simple space-time coordinate systems by Brading and Castellani. Extension to coordinate systems using generalized coordinates underlies the Hamiltonian and Lagrangian formulations of quantum field theory, classical relativistic mechanics, and quantum gravity.


Instances

* International Terrestrial Reference Frame * International Celestial Reference Frame * In fluid mechanics, Lagrangian and Eulerian specification of the flow field ; Other frames *
Frame fields in general relativity A frame field in general relativity (also called a tetrad or vierbein) is a set of four pointwise- orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of space ...
* Moving frame in mathematics


See also

* Analytical mechanics *
Applied mechanics Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments. In short, when mechanics concepts surpass being theoretical and are applied and e ...
* Cartesian coordinate system * Center-of-momentum frame *
Centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is paralle ...
* Centripetal force *
Classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
* Coriolis force * Curvilinear coordinates *
Datum reference A datum reference or just datum (plural: datumsThe plural of this sense of the word ''datum'' is ''datums'' by convention, in contrast with the other senses of the word in which '' data'' usually serves as both the plural form and the mass noun ...
* Dynamics (physics) * Frenet–Serret formulas * Galilean invariance *
General relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
* Generalized coordinates * Generalized forces * Geodetic reference frame * Inertial frame of reference * Local coordinates *
Material frame-indifference Walter Noll (January 7, 1925 June 6, 2017) was a mathematician, and Professor Emeritus at Carnegie Mellon University. He is best known for developing mathematical tools of classical mechanics, thermodynamics, and continuum mechanics. Biography B ...
*
Rod and frame test The rod and frame test is a psychophysical method of testing perception. It relies on the use of a rod and frame apparatus which uses a rotating rod set inside an individually rotatable drum, allowing an experimenter to vary the participant's frame ...
*
Kinematics Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a fiel ...
* Laboratory frame of reference * Lorentz transformation * Mach's principle * Orthogonal coordinates * Principle of relativity * Quantum reference frame


Notes


References

{{reflist *