In

velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. to the north). Veloc ...

.
If Newton's second law is applied to a system of [[Newton's Laws of Motion#Open systems|constant mass,"It is important to note that we ''cannot'' derive a general expression for Newton's second law for variable mass systems by treating the mass in F = ''d''P/''dt'' = ''d''(''M''v) as a ''variable''. [...] We ''can'' use F = ''d''P/''dt'' to analyze variable mass systems ''only'' if we apply it to an entire system of constant mass having parts among which there is an interchange of mass." [Emphasis as in the original] ''m'' may be moved outside the derivative operator. The equation then becomes
:$\backslash vec\; =\; m\backslash frac.$
By substituting the definition of

velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. to the north). Veloc ...

was completely equivalent to rest. This was contrary to Aristotle's notion of a "natural state" of rest that objects with mass naturally approached. Simple experiments showed that Galileo's understanding of the equivalence of constant velocity and rest were correct. For example, if a mariner dropped a cannonball from the crow's nest of a ship moving at a constant velocity, Aristotelian physics would have the cannonball fall straight down while the ship moved beneath it. Thus, in an Aristotelian universe, the falling cannonball would land behind the foot of the mast of a moving ship. However, when this experiment is actually conducted, the cannonball always falls at the foot of the mast, as if the cannonball knows to travel with the ship despite being separated from it. Since there is no forward horizontal force being applied on the cannonball as it falls, the only conclusion left is that the cannonball continues to move with the same velocity as the boat as it falls. Thus, no force is required to keep the cannonball moving at the constant forward velocity.
Moreover, any object traveling at a constant velocity must be subject to zero net force (resultant force). This is the definition of dynamic equilibrium: when all the forces on an object balance but it still moves at a constant velocity.
A simple case of dynamic equilibrium occurs in constant velocity motion across a surface with [[kinetic friction. In such a situation, a force is applied in the direction of motion while the kinetic friction force exactly opposes the applied force. This results in zero net force, but since the object started with a non-zero velocity, it continues to move with a non-zero velocity. Aristotle misinterpreted this motion as being caused by the applied force. However, when kinetic friction is taken into consideration it is clear that there is no net force causing constant velocity motion.

mass
Mass is both a property of a physical body and a measure of its resistance to acceleration (rate of change of velocity with respect to time) when a net force is applied. An object's mass also determines the strength of its gravitational attra ...

es. All other forces in nature derive from these four fundamental interactions. For example,

acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time.
Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the or ...

of every object in [[free-fall was constant and independent of the mass of the object. Today, this [[Gravitational acceleration|acceleration due to gravity towards the surface of the Earth is usually designated as $\backslash scriptstyle\; \backslash vec$ and has a magnitude of about 9.81 [[meters per second squared (this measurement is taken from sea level and may vary depending on location), and points toward the center of the Earth. This observation means that the force of gravity on an object at the Earth's surface is directly proportional to the object's mass. Thus an object that has a mass of $m$ will experience a force:
:$\backslash vec\; =\; m\backslash vec$
For an object in free-fall, this force is unopposed and the net force on the object is its weight. For objects not in free-fall, the force of gravity is opposed by the reaction forces applied by their supports. For example, a person standing on the ground experiences zero net force, since a [[normal force (a reaction force) is exerted by the ground upward on the person that counterbalances his weight that is directed downward.
Newton's contribution to gravitational theory was to unify the motions of heavenly bodies, which Aristotle had assumed were in a natural state of constant motion, with falling motion observed on the Earth. He proposed a [[Newton's law of gravity|law of gravity that could account for the celestial motions that had been described earlier using [[Kepler's laws of planetary motion.
Newton came to realize that the effects of gravity might be observed in different ways at larger distances. In particular, Newton determined that the acceleration of the Moon around the Earth could be ascribed to the same force of gravity if the acceleration due to gravity decreased as an [[inverse square law. Further, Newton realized that the acceleration of a body due to gravity is proportional to the mass of the other attracting body. Combining these ideas gives a formula that relates the mass ($\backslash scriptstyle\; m\_\backslash oplus$) and the radius ($\backslash scriptstyle\; R\_\backslash oplus$) of the Earth to the gravitational acceleration:
:$\backslash vec=-\backslash frac\; \backslash hat$
where the vector direction is given by $\backslash hat$, is the [[unit vector directed outward from the center of the Earth.
In this equation, a dimensional constant $G$ is used to describe the relative strength of gravity. This constant has come to be known as [[Newton's Universal Gravitation Constant, though its value was unknown in Newton's lifetime. Not until 1798 was [[Henry Cavendish able to make the first measurement of $G$ using a [[torsion balance; this was widely reported in the press as a measurement of the mass of the Earth since knowing $G$ could allow one to solve for the Earth's mass given the above equation. Newton, however, realized that since all celestial bodies followed the same [[Kepler's laws|laws of motion, his law of gravity had to be universal. Succinctly stated, [[Newton's Law of Gravitation states that the force on a spherical object of mass $m\_1$ due to the gravitational pull of mass $m\_2$ is
:$\backslash vec=-\backslash frac\; \backslash hat$
where $r$ is the distance between the two objects' centers of mass and $\backslash hat$ is the unit vector pointed in the direction away from the center of the first object toward the center of the second object.
This formula was powerful enough to stand as the basis for all subsequent descriptions of motion within the solar system until the 20th century. During that time, sophisticated methods of [[perturbation analysis were invented to calculate the deviations of [[orbits due to the influence of multiple bodies on a [[planet, [[moon, [[comet, or [[asteroid. The formalism was exact enough to allow mathematicians to predict the existence of the planet [[Neptune before it was observed.
[[Mercury (planet)|Mercury's orbit, however, did not match that predicted by Newton's Law of Gravitation. Some astrophysicists predicted the existence of another planet ([[Vulcan (hypothetical planet)|Vulcan) that would explain the discrepancies; however no such planet could be found. When [[Albert Einstein formulated his theory of [[general relativity (GR) he turned his attention to the problem of Mercury's orbit and found that his theory added [[Perihelion precession of Mercury|a correction, which could account for the discrepancy. This was the first time that Newton's Theory of Gravity had been shown to be inexact.
Since then, general relativity has been acknowledged as the theory that best explains gravity. In GR, gravitation is not viewed as a force, but rather, objects moving freely in gravitational fields travel under their own inertia in [[geodesic|straight lines through [[curved space-time – defined as the shortest space-time path between two space-time events. From the perspective of the object, all motion occurs as if there were no gravitation whatsoever. It is only when observing the motion in a global sense that the curvature of space-time can be observed and the force is inferred from the object's curved path. Thus, the straight line path in space-time is seen as a curved line in space, and it is called the ''[[external ballistics|ballistic [[trajectory'' of the object. For example, a [[basketball thrown from the ground moves in a [[parabola, as it is in a uniform gravitational field. Its space-time trajectory is almost a straight line, slightly curved (with the [[radius of curvature (applications)|radius of curvature of the order of few [[light-years). The time derivative of the changing momentum of the object is what we label as "gravitational force".

velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. to the north). Veloc ...

of the particle that is [[cross product|crossed with the magnetic field ($\backslash scriptstyle\; \backslash vec$).
The origin of electric and magnetic fields would not be fully explained until 1864 when [[James Clerk Maxwell unified a number of earlier theories into a set of 20 scalar equations, which were later reformulated into 4 vector equations by [[Oliver Heaviside and [[Josiah Willard Gibbs. These "[[Maxwell Equations" fully described the sources of the fields as being stationary and moving charges, and the interactions of the fields themselves. This led Maxwell to discover that electric and magnetic fields could be "self-generating" through a [[wave that traveled at a speed that he calculated to be the [[speed of light. This insight united the nascent fields of electromagnetic theory with [[optics and led directly to a complete description of the [[electromagnetic spectrum.
However, attempting to reconcile electromagnetic theory with two observations, the [[photoelectric effect, and the nonexistence of the [[ultraviolet catastrophe, proved troublesome. Through the work of leading theoretical physicists, a new theory of electromagnetism was developed using quantum mechanics. This final modification to electromagnetic theory ultimately led to [[quantum electrodynamics (or QED), which fully describes all electromagnetic phenomena as being mediated by wave–particles known as [[photons. In QED, photons are the fundamental exchange particle, which described all interactions relating to electromagnetism including the electromagnetic force.For a complete library on quantum mechanics see [[Quantum mechanics#References|Quantum mechanics – References

^{+} and W^{−} bosons, and [[neutral current, involving electrically neutral Z^{0} bosons. The most familiar effect of weak interaction is [[beta decay (of neutrons in atomic nuclei) and the associated [[radioactivity. This is a type of charged-current interaction. The word "weak" derives from the fact that the field strength is some 10^{13} times less than that of the [[strong force. Still, it is stronger than gravity over short distances. A consistent electroweak theory has also been developed, which shows that electromagnetic forces and the weak force are indistinguishable at a temperatures in excess of approximately 10^{15} [[kelvins. Such temperatures have been probed in modern [[particle accelerators and show the conditions of the [[universe in the early moments of the [[Big Bang.

velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. to the north). Veloc ...

, and [[angular momentum for

velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. to the north). Veloc ...

.

Video lecture on Newton's three laws

by [[Walter Lewin from [[MIT OpenCourseWare

A Java simulation on vector addition of forces

Force demonstrated as any influence on an object that changes the object's shape or motion (video)

{{good article [[Category:Force| [[Category:Natural philosophy [[Category:Classical mechanics [[Category:Vector physical quantities [[Category:Temporal rates

physics
Physics (from grc|φυσική (ἐπιστήμη)|physikḗ (epistḗmē)|knowledge of nature, from ''phýsis'' 'nature'), , is the natural science that studies matter, its motion and behavior through space and time, and the related ent ...

, a force is any interaction that, when unopposed, will change the motion
300px|Motion involves a change in position
In physics, motion is the phenomenon in which an object changes its position over time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and time. The ...

of an object
Object may refer to:
General meanings
* Object (philosophy), a thing, being, or concept
** Entity, something that is tangible and within the grasp of the senses
** Object (abstract), an object which does not exist at any particular time or place
...

. A force can cause an object with mass
Mass is both a property of a physical body and a measure of its resistance to acceleration (rate of change of velocity with respect to time) when a net force is applied. An object's mass also determines the strength of its gravitational attra ...

to change its velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. to the north). Veloc ...

(which includes to begin moving from a state of rest), i.e., to accelerate
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time.
Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the or ...

. Force can also be described intuitively as a push or a pull. A force has both magnitude
Magnitude may refer to:
Mathematics
*Euclidean vector, a quantity defined by both its magnitude and its direction
*Magnitude (mathematics), the relative size of an object
*Norm (mathematics), a term for the size or length of a vector
*Order of ...

and direction, making it a vector
Vector may refer to:
Biology
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism; a disease vector
*Vector (molecular biology), a DNA molecule used as a vehicle to artificially carr ...

quantity. It is measured in the SI unit of newtons
The newton (symbol: N) is the International System of Units (SI) derived unit of force. It is named after Isaac Newton in recognition of his work on classical mechanics, specifically Newton's second law of motion.
See below for the conversion ...

and represented by the symbol F.
The original form of Newton's second law
In classical mechanics, Newton's laws of motion are three laws that describe the relationship between the motion of an object and the forces acting on it. The first law states that an object either remains at rest or continues to move at a con ...

states that the net force acting upon an object is equal to the rate
Rate or rates may refer to:
Finance
* Rates (tax), a type of taxation system in the United Kingdom used to fund local government
* Exchange rate, rate at which one currency will be exchanged for another
Mathematics and science
* Rate (mathemat ...

at which its momentum
In Newtonian mechanics, linear momentum, translational momentum, or simply momentum (pl. momenta) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass a ...

changes with time
Time is the indefinite continued progress of existence and events that occur in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence event ...

. If the mass of the object is constant, this law implies that the acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time.
Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the or ...

of an object is directly to the net force acting on the object, is in the direction of the net force, and is inversely proportional to the mass
Mass is both a property of a physical body and a measure of its resistance to acceleration (rate of change of velocity with respect to time) when a net force is applied. An object's mass also determines the strength of its gravitational attra ...

of the object.
Concepts related to force include: thrust
Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction, to be applied to that syste ...

, which increases the velocity of an object; , which decreases the velocity of an object; and torque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study. The concept originated with the studies b ...

, which produces of an object. In an extended body, each part usually applies forces on the adjacent parts; the distribution of such forces through the body is the internal mechanical stress
In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighbouring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. For example, when ...

. Such internal mechanical stresses cause no acceleration of that body as the forces balance one another. Pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and ev ...

, the distribution of many small forces applied over an area of a body, is a simple type of stress that if unbalanced can cause the body to accelerate. Stress usually causes deformation
Deformation can refer to:
* Deformation (engineering), changes in an object's shape or form due to the application of a force or forces.
** Deformation (mechanics), such changes considered and analyzed as displacements of continuum bodies.
* Defo ...

of solid materials, or flow in fluid
In physics, a fluid is a substance that continually deforms (flows) under an applied shear stress, or external force. Fluids are a phase of matter and include liquids, gases and plasmas. They are substances with zero shear modulus, or, in simpl ...

s.
Development of the concept

Philosophers inantiquity
Antiquity or Antiquities may refer to
Historical objects or periods
Artifacts
*Antiquities, objects or artifacts surviving from ancient cultures
Eras
Any period before the European Middle Ages (5th to 15th centuries) but still within Western civ ...

used the concept of force in the study of stationary
In addition to its common meaning, stationary may have the following specialized scientific meanings:
Mathematics
* Stationary point
* Stationary process
* Stationary state
Meteorology
* A stationary front is a weather front that is not moving
...

and objects and simple machine
A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term re ...

s, but thinkers such as Aristotle
Aristotle (; grc-gre|Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Lyceum, the Peripatetic schoo ...

and Archimedes
Archimedes of Syracuse (; grc| ; ; ) was a Greek mathematician, physicist, engineer, inventor, and astronomer. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered to be ...

retained fundamental errors in understanding force. In part this was due to an incomplete understanding of the sometimes non-obvious force of friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative lateral motion of two ...

, and a consequently inadequate view of the nature of natural motion. A fundamental error was the belief that a force is required to maintain motion, even at a constant velocity. Most of the previous misunderstandings about motion and force were eventually corrected by Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (; 15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath, from Pisa. Galileo has been called the "father of observational astr ...

and Sir Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, theologian, and author (described in his time as a "natural philosopher") who is widely recognised as one of the greatest math ...

. With his mathematical insight, Sir Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, theologian, and author (described in his time as a "natural philosopher") who is widely recognised as one of the greatest math ...

formulated laws of motionIn physics, a number of noted theories of the motion of objects have developed. Among the best known are:
* Classical mechanics
** Newton's laws of motion
** Euler's laws of motion
** Cauchy's equations of motion
** Kepler's laws of planetary motion ...

that were not improved for nearly three hundred years. By the early 20th century, Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest physicists of all time. Einstein is known for developing the theory of relativity, but he also ma ...

developed a theory of relativity
The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the ...

that correctly predicted the action of forces on objects with increasing momenta near the speed of light, and also provided insight into the forces produced by gravitation and inertia
Inertia is the resistance of any physical object to any change in its velocity. This includes changes to the object's speed, or direction of motion.
An aspect of this property is the tendency of objects to keep moving in a straight line at a c ...

.
With modern insights into quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quant ...

and technology that can accelerate particles close to the speed of light, particle physics
Particle physics (also known as high energy physics) is a branch of physics that studies the nature of the particles that constitute matter and radiation. Although the word ''particle'' can refer to various types of very small objects (e.g. prot ...

has devised a Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including gravity) in the universe, as well as classifying all known elemen ...

to describe forces between particles smaller than atoms. The Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including gravity) in the universe, as well as classifying all known elemen ...

predicts that exchanged particles called gauge boson
300px|The Standard Model of elementary particles, with the gauge bosons in the fourth column in red
In particle physics, a gauge boson is a force carrier, a bosonic particle that carries any of the fundamental interactions of nature, commonly called ...

s are the fundamental means by which forces are emitted and absorbed. Only four main interactions are known: in order of decreasing strength, they are: , electromagnetic
Electromagnetism is a branch of physics involving the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force is carried by electromagnetic fields composed ...

, , and gravitational
Gravity (), or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward (or ''gravitate'' toward) one another. On Earth, gravity gives weight to p ...

. observation
Observation is the active acquisition of information from a primary source. In living beings, observation employs the senses. In science, observation can also involve the perception and recording of data via the use of scientific instruments. The ...

s made during the 1970s and 1980s confirmed that the weak and electromagnetic forces are expressions of a more fundamental electroweak
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different ...

interaction.
Pre-Newtonian concepts

Since antiquity the concept of force has been recognized as integral to the functioning of each of thesimple machine
A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term re ...

s. The mechanical advantage
Mechanical may refer to:
Machine
* Mechanical system, a system that manages the power of forces and movements to accomplish a task
* Machine (mechanical), a system of mechanisms that shape the actuator input to achieve a specific application of ou ...

given by a simple machine allowed for less force to be used in exchange for that force acting over a greater distance for the same amount of work
Work may refer to:
* Work (human activity), intentional activity people perform to support themselves, others, or the community
** Manual labour, physical work done by humans
** House work, housework, or homemaking
* Work (physics), the product of ...

. Analysis of the characteristics of forces ultimately culminated in the work of Archimedes
Archimedes of Syracuse (; grc| ; ; ) was a Greek mathematician, physicist, engineer, inventor, and astronomer. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered to be ...

who was especially famous for formulating a treatment of buoyant force
.
Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pr ...

s inherent in fluid
In physics, a fluid is a substance that continually deforms (flows) under an applied shear stress, or external force. Fluids are a phase of matter and include liquids, gases and plasmas. They are substances with zero shear modulus, or, in simpl ...

s.
Aristotle
Aristotle (; grc-gre|Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Lyceum, the Peripatetic schoo ...

provided a philosophical
Philosophy (from , ) is the study of general and fundamental questions, such as those about reason, existence, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. The term was proba ...

discussion of the concept of a force as an integral part of . In Aristotle's view, the terrestrial sphere contained four that come to rest at different "natural places" therein. Aristotle believed that motionless objects on Earth, those composed mostly of the elements earth and water, to be in their natural place on the ground and that they will stay that way if left alone. He distinguished between the innate tendency of objects to find their "natural place" (e.g., for heavy bodies to fall), which led to "natural motion", and unnatural or forced motion, which required continued application of a force. This theory, based on the everyday experience of how objects move, such as the constant application of a force needed to keep a cart moving, had conceptual trouble accounting for the behavior of projectile
A projectile is any object thrown by the exertion of a force. It can also be defined as an object launched into the space and allowed to move free under the influence of gravity and air resistance. Although any object in motion through space (for e ...

s, such as the flight of arrows. The place where the archer moves the projectile was at the start of the flight, and while the projectile sailed through the air, no discernible efficient cause acts on it. Aristotle was aware of this problem and proposed that the air displaced through the projectile's path carries the projectile to its target. This explanation demands a continuum like air for change of place in general.
Aristotelian physics
Aristotelian physics is the form of natural science described in the works of the Greek philosopher Aristotle (384–322 BC). In his work ''Physics'', Aristotle intended to establish general principles of change that govern all natural bodies, bot ...

began facing criticism in , first by John Philoponus
John Philoponus (; ; c. 490 – c. 570), also known as John the Grammarian or John of Alexandria, was a Byzantine Alexandrian philologist, Aristotelian commentator and Christian theologian, author of a considerable number of philosophical treatises ...

in the 6th century.
The shortcomings of Aristotelian physics would not be fully corrected until the 17th century work of Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (; 15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath, from Pisa. Galileo has been called the "father of observational astr ...

, who was influenced by the late medieval idea that objects in forced motion carried an innate force of . Galileo constructed an experiment in which stones and cannonballs were both rolled down an incline to disprove the . He showed that the bodies were accelerated by gravity to an extent that was independent of their mass and argued that objects retain their velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. to the north). Veloc ...

unless acted on by a force, for example friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative lateral motion of two ...

.Drake, Stillman (1978). Galileo At Work. Chicago: University of Chicago Press.
In the early 17th century, before Newton's Principia, the term "force" ( la|vis) was applied to many physical and non-physical phenomena, e.g., for an acceleration of a point. The product of a point mass and the square of its velocity was named (live force) by [[Gottfried Wilhelm Leibniz|Leibniz. The modern concept of force corresponds to the Newton's (accelerating force).
Newtonian mechanics

Sir Isaac Newton described the motion of all objects using the concepts ofinertia
Inertia is the resistance of any physical object to any change in its velocity. This includes changes to the object's speed, or direction of motion.
An aspect of this property is the tendency of objects to keep moving in a straight line at a c ...

and force, and in doing so he found they obey certain [[conservation laws. In 1687, Newton published his thesis ''[[Philosophiæ Naturalis Principia Mathematica''. This is a recent translation into English by I. Bernard Cohen and Anne Whitman, with help from Julia Budenz. In this work Newton set out three laws of motion that to this day are the way forces are described in physics.
First law

Newton's first law of motion states that objects continue to move in a state of constant velocity unless acted upon by an external [[net force (resultant force). This law is an extension of Galileo's insight that constant velocity was associated with a lack of net force (see [[#Dynamic equilibrium|a more detailed description of this below). Newton proposed that every object with mass has an innateinertia
Inertia is the resistance of any physical object to any change in its velocity. This includes changes to the object's speed, or direction of motion.
An aspect of this property is the tendency of objects to keep moving in a straight line at a c ...

that functions as the fundamental equilibrium "natural state" in place of the Aristotelian idea of the "natural state of rest". That is, Newton's empirical first law contradicts the intuitive Aristotelian belief that a net force is required to keep an object moving with constant velocity. By making ''rest'' physically indistinguishable from ''non-zero constant velocity'', Newton's first law directly connects inertia with the concept of [[Galilean relativity|relative velocities. Specifically, in systems where objects are moving with different velocities, it is impossible to determine which object is "in motion" and which object is "at rest". The laws of physics are the same in every [[inertial frame of reference, that is, in all frames related by a [[Galilean transformation.
For instance, while traveling in a moving vehicle at a constant velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. to the north). Veloc ...

, the laws of physics do not change as a result of its motion. If a person riding within the vehicle throws a ball straight up, that person will observe it rise vertically and fall vertically and not have to apply a force in the direction the vehicle is moving. Another person, observing the moving vehicle pass by, would observe the ball follow a curving [[parabola|parabolic path in the same direction as the motion of the vehicle. It is the inertia of the ball associated with its constant velocity in the direction of the vehicle's motion that ensures the ball continues to move forward even as it is thrown up and falls back down. From the perspective of the person in the car, the vehicle and everything inside of it is at rest: It is the outside world that is moving with a constant speed in the opposite direction of the vehicle. Since there is no experiment that can distinguish whether it is the vehicle that is at rest or the outside world that is at rest, the two situations are considered to be [[Galilean equivalence|physically indistinguishable. Inertia therefore applies equally well to constant velocity motion as it does to rest.
Second law

A modern statement of Newton's second law is a vector equation:Newton's ''Principia Mathematica'' actually used a finite difference version of this equation based upon ''impulse''. See ''[[Newton's laws of motion#Impulse|Impulse''. :$\backslash vec\; =\; \backslash frac,$ where $\backslash vec$ is themomentum
In Newtonian mechanics, linear momentum, translational momentum, or simply momentum (pl. momenta) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass a ...

of the system, and $\backslash vec$ is the net ([[Vector (geometric)#Addition and subtraction|vector sum) force. If a body is in equilibrium, there is zero ''net'' force by definition (balanced forces may be present nevertheless). In contrast, the second law states that if there is an ''unbalanced'' force acting on an object it will result in the object's momentum changing over time.
By the definition of [[Momentum#Linear momentum of a particle|momentum,
:$\backslash vec\; =\; \backslash frac\; =\; \backslash frac,$
where ''m'' is the mass
Mass is both a property of a physical body and a measure of its resistance to acceleration (rate of change of velocity with respect to time) when a net force is applied. An object's mass also determines the strength of its gravitational attra ...

and $\backslash vec$ is the acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time.
Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the or ...

, the algebraic version of Newton's second law
In classical mechanics, Newton's laws of motion are three laws that describe the relationship between the motion of an object and the forces acting on it. The first law states that an object either remains at rest or continues to move at a con ...

is derived:
:$\backslash vec\; =m\backslash vec.$
Newton never explicitly stated the formula in the reduced form above.
Newton's second law asserts the direct proportionality of acceleration to force and the inverse proportionality of acceleration to mass. Accelerations can be defined through [[kinematic measurements. However, while kinematics are well-described through [[frame of reference|reference frame analysis in advanced physics, there are still deep questions that remain as to what is the proper definition of mass. [[General relativity offers an equivalence between [[space-time and mass, but lacking a coherent theory of [[quantum gravity, it is unclear as to how or whether this connection is relevant on microscales. With some justification, Newton's second law can be taken as a quantitative definition of ''mass'' by writing the law as an equality; the relative units of force and mass then are fixed.
The use of Newton's second law as a ''definition'' of force has been disparaged in some of the more rigorous textbooks, because it is essentially a mathematical [[truism. Notable physicists, philosophers and mathematicians who have sought a more explicit definition of the concept of force include [[Ernst Mach and [[Walter Noll.
Newton's second law can be used to measure the strength of forces. For instance, knowledge of the masses of [[planets along with the accelerations of their [[orbits allows scientists to calculate the gravitational forces on planets.
Third law

Whenever one body exerts a force on another, the latter simultaneously exerts an equal and opposite force on the first. In vector form, if $\backslash scriptstyle\backslash vec\_$ is the force of body 1 on body 2 and $\backslash scriptstyle\backslash vec\_$ that of body 2 on body 1, then :$\backslash vec\_=-\backslash vec\_.$ This law is sometimes referred to as the ''action-reaction law'', with $\backslash scriptstyle\; \backslash vec\_$ called the ''action'' and $\backslash scriptstyle\; -\backslash vec\_$ the ''[[Reaction (physics)|reaction''. Newton's Third Law is a result of applying [[symmetry to situations where forces can be attributed to the presence of different objects. The third law means that all forces are ''interactions'' between different bodies,"Any single force is only one aspect of a mutual interaction between ''two'' bodies." and thus that there is no such thing as a unidirectional force or a force that acts on only one body. In a system composed of object 1 and object 2, the net force on the system due to their mutual interactions is zero: :$\backslash vec\_+\backslash vec\_=0.$ More generally, in a [[closed system of particles, all internal forces are balanced. The particles may accelerate with respect to each other but the [[center of mass of the system will not accelerate. If an external force acts on the system, it will make the center of mass accelerate in proportion to the magnitude of the external force divided by the mass of the system. Combining Newton's Second and Third Laws, it is possible to show that the [[Conservation of momentum|linear momentum of a system is conserved. In a system of two particles, if $\backslash scriptstyle\; \backslash vec\_1$ is the momentum of object 1 and $\backslash scriptstyle\; \backslash vec\_$ the momentum of object 2, then :$\backslash frac\; +\; \backslash frac=\; \backslash vec\_\; +\; \backslash vec\_\; =\; 0.$ Using similar arguments, this can be generalized to a system with an arbitrary number of particles. In general, as long as all forces are due to the interaction of objects with mass, it is possible to define a system such that net momentum is never lost nor gained.Special theory of relativity

In the [[special theory of relativity, mass and [[energy are equivalent (as can be seen by calculating the work required to accelerate an object). When an object's velocity increases, so does its energy and hence its mass equivalent (inertia). It thus requires more force to accelerate it the same amount than it did at a lower velocity. Newton's Second Law :$\backslash vec\; =\; \backslash frac$ remains valid because it is a mathematical definition. But for relativistic momentum to be conserved, it must be redefined as: :$\backslash vec\; =\; \backslash frac,$ where $m\_0$ is the [[rest mass and $c$ the [[speed of light. The relativistic expression relating force and acceleration for a particle with constant non-zero [[rest mass $m$ moving in the $x$ direction is: :$\backslash vec\; =\; \backslash left(\backslash gamma^3\; m\; a\_x,\; \backslash gamma\; m\; a\_y,\; \backslash gamma\; m\; a\_z\backslash right),$ where :$\backslash gamma\; =\; \backslash frac.$ is called the [[Lorentz factor. In the early history of relativity, the expressions $\backslash gamma^3\; m$ and $\backslash gamma\; m$ were called [[Mass in special relativity#Transverse and longitudinal mass|longitudinal and transverse mass. Relativistic force does not produce a constant acceleration, but an ever-decreasing acceleration as the object approaches the speed of light. Note that $\backslash gamma$ approaches asymptotically an infinite value and is [[Division by zero|undefined for an object with a non-zero [[Invariant mass|rest mass as it approaches the speed of light, and the theory yields no prediction at that speed. If $v$ is very small compared to $c$, then $\backslash gamma$ is very close to 1 and :$F\; =\; m\; a$ is a close approximation. Even for use in relativity, however, one can restore the form of :$F^\backslash mu\; =\; mA^\backslash mu\; \backslash ,$ through the use of [[four-vectors. This relation is correct in relativity when $F^\backslash mu$ is the [[four-force, $m$ is the [[invariant mass, and $A^\backslash mu$ is the [[four-acceleration.Descriptions

Since forces are perceived as pushes or pulls, this can provide an intuitive understanding for describing forces. As with other physical concepts (e.g. [[temperature), the intuitive understanding of forces is quantified using precise [[operational definitions that are consistent with direct [[sensory perception|observations and [[measurement|compared to a standard measurement scale. Through experimentation, it is determined that laboratory measurements of forces are fully consistent with the [[conceptual definition of force offered by [[#Newtonian mechanics|Newtonian mechanics. Forces act in a particular [[direction (geometry)|direction and have [[Magnitude (mathematics)|sizes dependent upon how strong the push or pull is. Because of these characteristics, forces are classified as "[[Euclidean vector|vector quantities". This means that forces follow a different set of mathematical rules than physical quantities that do not have direction (denoted [[scalar (physics)|scalar quantities). For example, when determining what happens when two forces act on the same object, it is necessary to know both the magnitude and the direction of both forces to calculate the [[resultant|result. If both of these pieces of information are not known for each force, the situation is ambiguous. For example, if you know that two people are pulling on the same rope with known magnitudes of force but you do not know which direction either person is pulling, it is impossible to determine what the acceleration of the rope will be. The two people could be pulling against each other as in [[tug of war or the two people could be pulling in the same direction. In this simple [[one-dimensional example, without knowing the direction of the forces it is impossible to decide whether the net force is the result of adding the two force magnitudes or subtracting one from the other. Associating forces with vectors avoids such problems. Historically, forces were first quantitatively investigated in conditions of [[static equilibrium where several forces canceled each other out. Such experiments demonstrate the crucial properties that forces are additive [[Vector (geometric)|vector quantities: they have [[magnitude (mathematics)|magnitude and direction. When two forces act on a [[point particle, the resulting force, the ''resultant'' (also called the ''[[net force''), can be determined by following the [[parallelogram rule of [[vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal of the parallelogram. The magnitude of the resultant varies from the difference of the magnitudes of the two forces to their sum, depending on the angle between their lines of action. However, if the forces are acting on an extended body, their respective lines of application must also be specified in order to account for their effects on the motion of the body. [[Free-body diagrams can be used as a convenient way to keep track of forces acting on a system. Ideally, these diagrams are drawn with the angles and relative magnitudes of the force vectors preserved so that [[Vector (geometric)|graphical vector addition can be done to determine the net force. As well as being added, forces can also be resolved into independent components at [[right angles to each other. A horizontal force pointing northeast can therefore be split into two forces, one pointing north, and one pointing east. Summing these component forces using vector addition yields the original force. Resolving force vectors into components of a set of [[basis vectors is often a more mathematically clean way to describe forces than using magnitudes and directions. This is because, for [[orthogonal components, the components of the vector sum are uniquely determined by the scalar addition of the components of the individual vectors. Orthogonal components are independent of each other because forces acting at ninety degrees to each other have no effect on the magnitude or direction of the other. Choosing a set of orthogonal basis vectors is often done by considering what set of basis vectors will make the mathematics most convenient. Choosing a basis vector that is in the same direction as one of the forces is desirable, since that force would then have only one non-zero component. Orthogonal force vectors can be three-dimensional with the third component being at right-angles to the other two.Equilibrium

[[Mechanical equilibrium|Equilibrium occurs when the resultant force acting on a point particle is zero (that is, the vector sum of all forces is zero). When dealing with an extended body, it is also necessary that the net torque be zero. There are two kinds of equilibrium: [[static equilibrium and [[#Dynamic equilibrium|dynamic equilibrium.Static

Static equilibrium was understood well before the invention of classical mechanics. Objects that are at rest have zero net force acting on them. The simplest case of static equilibrium occurs when two forces are equal in magnitude but opposite in direction. For example, an object on a level surface is pulled (attracted) downward toward the center of the Earth by the force of gravity. At the same time, a force is applied by the surface that resists the downward force with equal upward force (called a [[normal force). The situation produces zero net force and hence no acceleration. Pushing against an object that rests on a frictional surface can result in a situation where the object does not move because the applied force is opposed by [[static friction, generated between the object and the table surface. For a situation with no movement, the static friction force ''exactly'' balances the applied force resulting in no acceleration. The static friction increases or decreases in response to the applied force up to an upper limit determined by the characteristics of the contact between the surface and the object. A static equilibrium between two forces is the most usual way of measuring forces, using simple devices such as [[weighing scales and [[spring balances. For example, an object suspended on a vertical [[spring scale experiences the force of gravity acting on the object balanced by a force applied by the "spring reaction force", which equals the object's weight. Using such tools, some quantitative force laws were discovered: that the force of gravity is proportional to volume for objects of constant [[density (widely exploited for millennia to define standard weights); [[Archimedes' principle for buoyancy; Archimedes' analysis of the [[lever; [[Boyle's law for gas pressure; and [[Hooke's law for springs. These were all formulated and experimentally verified before Isaac Newton expounded his [[Newton's Laws of Motion|Three Laws of Motion.Dynamic

Dynamic equilibrium was first described by [[Galileo who noticed that certain assumptions of Aristotelian physics were contradicted by observations and [[logic. Galileo realized that [[Galilean relativity|simple velocity addition demands that the concept of an "absolute [[rest frame" did not exist. Galileo concluded that motion in a constantForces in quantum mechanics

The notion "force" keeps its meaning inquantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quant ...

, though one is now dealing with operators instead of classical variables and though the physics is now described by the [[Schrödinger equation instead of [[Newtonian mechanics|Newtonian equations. This has the consequence that the results of a measurement are now sometimes "quantized", i.e. they appear in discrete portions. This is, of course, difficult to imagine in the context of "forces". However, the potentials ''V''(''x'',''y'',''z'') or [[field (physics)|fields, from which the forces generally can be derived, are treated similarly to classical position variables, i.e., $V(x,y,z)\backslash to\; (\backslash hat\; x,\backslash hat\; y,\backslash hat\; z)$.
This becomes different only in the framework of [[quantum field theory, where these fields are also quantized.
However, already in quantum mechanics there is one "caveat", namely the particles acting onto each other do not only possess the spatial variable, but also a discrete intrinsic [[angular momentum|angular momentum-like variable called the "[[Spin (physics)|spin", and there is the [[Pauli exclusion principle relating the space and the spin variables. Depending on the value of the spin, identical particles split into two different classes, [[fermions and [[bosons. If two identical fermions (e.g. electrons) have a ''symmetric'' spin function (e.g. parallel spins) the spatial variables must be ''antisymmetric'' (i.e. they exclude each other from their places much as if there was a repulsive force), and vice versa, i.e. for antiparallel ''spins'' the ''position variables'' must be symmetric (i.e. the apparent force must be attractive). Thus in the case of two fermions there is a strictly negative correlation between spatial and spin variables, whereas for two bosons (e.g. quanta of electromagnetic waves, photons) the correlation is strictly positive.
Thus the notion "force" loses already part of its meaning.
Feynman diagrams

In modernparticle physics
Particle physics (also known as high energy physics) is a branch of physics that studies the nature of the particles that constitute matter and radiation. Although the word ''particle'' can refer to various types of very small objects (e.g. prot ...

, forces and the acceleration of particles are explained as a mathematical by-product of exchange of momentum-carrying gauge boson
300px|The Standard Model of elementary particles, with the gauge bosons in the fourth column in red
In particle physics, a gauge boson is a force carrier, a bosonic particle that carries any of the fundamental interactions of nature, commonly called ...

s. With the development of [[quantum field theory and [[general relativity, it was realized that force is a redundant concept arising from [[conservation of momentum ([[4-momentum in relativity and momentum of [[virtual particles in [[quantum electrodynamics). The conservation of momentum can be directly derived from the homogeneity or [[Symmetry in physics|symmetry of [[space and so is usually considered more fundamental than the concept of a force. Thus the currently known [[fundamental forces are considered more accurately to be "[[fundamental interactions". When particle A emits (creates) or absorbs (annihilates) virtual particle B, a momentum conservation results in recoil of particle A making impression of repulsion or attraction between particles A A' exchanging by B. This description applies to all forces arising from fundamental interactions. While sophisticated mathematical descriptions are needed to predict, in full detail, the accurate result of such interactions, there is a conceptually simple way to describe such interactions through the use of Feynman diagrams. In a Feynman diagram, each matter particle is represented as a straight line (see [[world line) traveling through time, which normally increases up or to the right in the diagram. Matter and anti-matter particles are identical except for their direction of propagation through the Feynman diagram. World lines of particles intersect at interaction vertices, and the Feynman diagram represents any force arising from an interaction as occurring at the vertex with an associated instantaneous change in the direction of the particle world lines. Gauge bosons are emitted away from the vertex as wavy lines and, in the case of virtual particle exchange, are absorbed at an adjacent vertex.
The utility of Feynman diagrams is that other types of physical phenomena that are part of the general picture of [[fundamental interactions but are conceptually separate from forces can also be described using the same rules. For example, a Feynman diagram can describe in succinct detail how a [[neutron [[beta decay|decays into an [[electron, [[proton, and [[neutrino, an interaction mediated by the same gauge boson that is responsible for the [[weak nuclear force.
Fundamental forces

All of the known forces of the universe are classified into four [[fundamental interactions. The and the forces act only at very short distances, and are responsible for the interactions between [[subatomic particles, including [[nucleons and compound [[Atomic nucleus|nuclei. The [[electromagnetic force acts between [[electric charges, and the [[gravitational force acts betweenfriction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative lateral motion of two ...

is a manifestation of the electromagnetic force acting between [[atoms of two surfaces, and the [[Pauli exclusion principle, which does not permit atoms to pass through each other. Similarly, the forces in [[spring (device)|springs, modeled by [[Hooke's law, are the result of electromagnetic forces and the Pauli exclusion principle acting together to return an object to its [[Mechanical equilibrium|equilibrium position. [[Centrifugal force (fictitious)|Centrifugal forces are acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time.
Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the or ...

forces that arise simply from the acceleration of [[rotation|rotating [[frames of reference.
The fundamental theories for forces developed from the [[Unified field theory|unification of different ideas. For example, Sir [[Isaac Newton unified, with his universal theory of [[gravitation, the force responsible for objects falling near the surface of the [[Earth with the force responsible for the falling of celestial bodies about the Earth (the [[Moon) and around the Sun (the planets). [[Michael Faraday and [[James Clerk Maxwell demonstrated that electric and magnetic forces were unified through a theory of electromagnetism. In the 20th century, the development of quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quant ...

led to a modern understanding that the first three fundamental forces (all except gravity) are manifestations of matter ([[fermions) interacting by exchanging [[virtual particles called gauge boson
300px|The Standard Model of elementary particles, with the gauge bosons in the fourth column in red
In particle physics, a gauge boson is a force carrier, a bosonic particle that carries any of the fundamental interactions of nature, commonly called ...

s. This Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including gravity) in the universe, as well as classifying all known elemen ...

of particle physics assumes a similarity between the forces and led scientists to predict the unification of the weak and electromagnetic forces in electroweak
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different ...

theory, which was subsequently confirmed by observation. The complete formulation of the Standard Model predicts an as yet unobserved [[Higgs mechanism, but observations such as [[neutrino oscillations suggest that the Standard Model is incomplete. A [[Grand Unified Theory that allows for the combination of the electroweak interaction with the strong force is held out as a possibility with candidate theories such as [[supersymmetry proposed to accommodate some of the outstanding [[unsolved problems in physics. Physicists are still attempting to develop self-consistent unification models that would combine all four fundamental interactions into a [[theory of everything. Einstein tried and failed at this endeavor, but currently the most popular approach to answering this question is [[string theory.
Gravitational

What we now call gravity was not identified as a universal force until the work of Isaac Newton. Before Newton, the tendency for objects to fall towards the Earth was not understood to be related to the motions of celestial objects. Galileo was instrumental in describing the characteristics of falling objects by determining that theElectromagnetic

The [[electrostatic force was first described in 1784 by Coulomb as a force that existed intrinsically between two [[electric charge|charges. The properties of the electrostatic force were that it varied as an [[inverse square law directed in the [[polar coordinates|radial direction, was both attractive and repulsive (there was intrinsic [[Electrical polarity|polarity), was independent of the mass of the charged objects, and followed the [[superposition principle. [[Coulomb's law unifies all these observations into one succinct statement. Subsequent mathematicians and physicists found the construct of the ''[[electric field'' to be useful for determining the electrostatic force on an electric charge at any point in space. The electric field was based on using a hypothetical "[[test charge" anywhere in space and then using Coulomb's Law to determine the electrostatic force. Thus the electric field anywhere in space is defined as :$\backslash vec\; =$ where $q$ is the magnitude of the hypothetical test charge. Meanwhile, the [[Lorentz force of [[magnetism was discovered to exist between two [[electric currents. It has the same mathematical character as Coulomb's Law with the proviso that like currents attract and unlike currents repel. Similar to the electric field, the [[magnetic field can be used to determine the magnetic force on an electric current at any point in space. In this case, the magnitude of the magnetic field was determined to be :$B\; =$ where $I$ is the magnitude of the hypothetical test current and $\backslash scriptstyle\; \backslash ell$ is the length of hypothetical wire through which the test current flows. The magnetic field exerts a force on all [[magnets including, for example, those used in [[compasses. The fact that the [[geomagnetism|Earth's magnetic field is aligned closely with the orientation of the Earth's [[rotation|axis causes compass magnets to become oriented because of the magnetic force pulling on the needle. Through combining the definition of electric current as the time rate of change of electric charge, a rule of [[Cross product|vector multiplication called [[Lorentz force|Lorentz's Law describes the force on a charge moving in a magnetic field. The connection between electricity and magnetism allows for the description of a unified ''electromagnetic force'' that acts on a charge. This force can be written as a sum of the electrostatic force (due to the electric field) and the magnetic force (due to the magnetic field). Fully stated, this is the law: :$\backslash vec\; =\; q(\backslash vec\; +\; \backslash vec\; \backslash times\; \backslash vec)$ where $\backslash scriptstyle\; \backslash vec$ is the electromagnetic force, $q$ is the magnitude of the charge of the particle, $\backslash scriptstyle\; \backslash vec$ is the electric field, $\backslash scriptstyle\; \backslash vec$ is theStrong nuclear

There are two "nuclear forces", which today are usually described as interactions that take place in quantum theories of particle physics. The [[strong nuclear force is the force responsible for the structural integrity of [[atomic nuclei while the [[weak nuclear force is responsible for the decay of certain [[nucleons into [[leptons and other types of [[hadrons. The strong force is today understood to represent the [[interactions between [[quarks and [[gluons as detailed by the theory of [[quantum chromodynamics (QCD). The strong force is the [[fundamental force mediated by [[gluons, acting upon quarks, [[antiparticle|antiquarks, and the [[gluons themselves. The (aptly named) strong interaction is the "strongest" of the four fundamental forces. The strong force only acts ''directly'' upon elementary particles. However, a residual of the force is observed between [[hadrons (the best known example being the force that acts between [[nucleons in atomic nuclei) as the [[nuclear force. Here the strong force acts indirectly, transmitted as gluons, which form part of the virtual pi and rho [[mesons, which classically transmit the nuclear force (see this topic for more). The failure of many searches for [[free quarks has shown that the elementary particles affected are not directly observable. This phenomenon is called [[color confinement.Weak nuclear

The weak force is due to the exchange of the heavy [[W and Z bosons. Since the weak force is mediated by two types of bosons, it can be divided into two types of interaction or "[[Feynman diagram|vertices" — [[charged current, involving the electrically charged WNon-fundamental forces

Some forces are consequences of the fundamental ones. In such situations, idealized models can be utilized to gain physical insight.Normal force

The normal force is due to repulsive forces of interaction between atoms at close contact. When their electron clouds overlap, Pauli repulsion (due to [[fermionic nature of [[electrons) follows resulting in the force that acts in a direction [[Normal (geometry)|normal to the surface interface between two objects. The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of the normal force in action is the impact force on an object crashing into an immobile surface.Friction

Friction is a surface force that opposes relative motion. The frictional force is directly related to the normal force that acts to keep two solid objects separated at the point of contact. There are two broad classifications of frictional forces: [[static friction and [[kinetic friction. The static friction force ($F\_$) will exactly oppose forces applied to an object parallel to a surface contact up to the limit specified by the [[coefficient of static friction ($\backslash mu\_$) multiplied by the normal force ($F\_N$). In other words, the magnitude of the static friction force satisfies the inequality: :$0\; \backslash le\; F\_\; \backslash le\; \backslash mu\_\; F\_\backslash mathrm.$ The kinetic friction force ($F\_$) is independent of both the forces applied and the movement of the object. Thus, the magnitude of the force equals: :$F\_\; =\; \backslash mu\_\; F\_\backslash mathrm,$ where $\backslash mu\_$ is the [[coefficient of kinetic friction. For most surface interfaces, the coefficient of kinetic friction is less than the coefficient of static friction.Tension

Tension forces can be modeled using [[ideal strings that are massless, frictionless, unbreakable, and unstretchable. They can be combined with ideal [[pulleys, which allow ideal strings to switch physical direction. Ideal strings transmit tension forces instantaneously in action-reaction pairs so that if two objects are connected by an ideal string, any force directed along the string by the first object is accompanied by a force directed along the string in the opposite direction by the second object. By connecting the same string multiple times to the same object through the use of a set-up that uses movable pulleys, the tension force on a load can be multiplied. For every string that acts on a load, another factor of the tension force in the string acts on the load. However, even though such machines allow for an [[mechanical advantage|increase in force, there is a corresponding increase in the length of string that must be displaced in order to move the load. These tandem effects result ultimately in the [[conservation of energy|conservation of mechanical energy since the [[#Kinematic integrals|work done on the load is the same no matter how complicated the machine.Elastic force

An elastic force acts to return a [[Spring (device)|spring to its natural length. An [[ideal spring is taken to be massless, frictionless, unbreakable, and infinitely stretchable. Such springs exert forces that push when contracted, or pull when extended, in proportion to the [[displacement field (mechanics)|displacement of the spring from its equilibrium position. This linear relationship was described by [[Robert Hooke in 1676, for whom [[Hooke's law is named. If $\backslash Delta\; x$ is the displacement, the force exerted by an ideal spring equals: :$\backslash vec=-k\; \backslash Delta\; \backslash vec$ where $k$ is the spring constant (or force constant), which is particular to the spring. The minus sign accounts for the tendency of the force to act in opposition to the applied load.Continuum mechanics

Newton's laws and Newtonian mechanics in general were first developed to describe how forces affect idealized [[point particles rather than three-dimensional objects. However, in real life, matter has extended structure and forces that act on one part of an object might affect other parts of an object. For situations where lattice holding together the atoms in an object is able to flow, contract, expand, or otherwise change shape, the theories of [[continuum mechanics describe the way forces affect the material. For example, in extended [[fluid mechanics|fluids, differences in [[pressure result in forces being directed along the pressure [[gradients as follows: :$\backslash frac\; =\; -\; \backslash vec\; P$ where $V$ is the volume of the object in the fluid and $P$ is the [[scalar function that describes the pressure at all locations in space. Pressure gradients and differentials result in the [[buoyancy|buoyant force for fluids suspended in gravitational fields, winds in [[atmospheric science, and the [[lift (physics)|lift associated with [[aerodynamics and [[flight. A specific instance of such a force that is associated with [[dynamic pressure is fluid resistance: a body force that resists the motion of an object through a fluid due to [[viscosity. For so-called "[[Drag (physics)#Very low Reynolds numbers – Stokes' drag|Stokes' drag" the force is approximately proportional to the velocity, but opposite in direction: :$\backslash vec\_\backslash mathrm\; =\; -\; b\; \backslash vec\; \backslash ,$ where: :$b$ is a constant that depends on the properties of the fluid and the dimensions of the object (usually the [[Cross section (geometry)|cross-sectional area), and :$\backslash scriptstyle\; \backslash vec$ is the velocity of the object. More formally, forces in [[continuum mechanics are fully described by a [[Stress (mechanics)|stress–[[tensor with terms that are roughly defined as :$\backslash sigma\; =\; \backslash frac$ where $A$ is the relevant cross-sectional area for the volume for which the stress-tensor is being calculated. This formalism includes pressure terms associated with forces that act normal to the cross-sectional area (the [[matrix diagonals of the tensor) as well as [[Shear stress|shear terms associated with forces that act [[Parallel (geometry)|parallel to the cross-sectional area (the off-diagonal elements). The stress tensor accounts for forces that cause all [[strain (physics)|strains (deformations) including also [[tensile stresses and [[compression (physical)|compressions.''University Physics'', Sears, Young & Zemansky, pp. 18–38Fictitious forces

There are forces that are [[frame dependent, meaning that they appear due to the adoption of non-Newtonian (that is, [[non-inertial frame|non-inertial) [[Frame of reference|reference frames. Such forces include the [[Centrifugal force (rotating reference frame)|centrifugal force and the [[Coriolis force. These forces are considered fictitious because they do not exist in frames of reference that are not accelerating. Because these forces are not genuine they are also referred to as "pseudo forces". In [[general relativity, [[gravity becomes a fictitious force that arises in situations where spacetime deviates from a flat geometry. As an extension, [[Kaluza–Klein theory and [[string theory ascribe electromagnetism and the other [[Fundamental interaction|fundamental forces respectively to the curvature of differently scaled dimensions, which would ultimately imply that all forces are fictitious.Rotations and torque

Forces that cause extended objects to rotate are associated withtorque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study. The concept originated with the studies b ...

s. Mathematically, the torque of a force $\backslash scriptstyle\; \backslash vec$ is defined relative to an arbitrary reference point as the [[cross-product:
:$\backslash vec\; =\; \backslash vec\; \backslash times\; \backslash vec$
where
:$\backslash scriptstyle\; \backslash vec$ is the [[position vector of the force application point relative to the reference point.
Torque is the rotation equivalent of force in the same way that [[angle is the rotational equivalent for [[position (vector)|position, [[angular velocity for momentum
In Newtonian mechanics, linear momentum, translational momentum, or simply momentum (pl. momenta) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass a ...

. As a consequence of Newton's First Law of Motion, there exists [[rotational inertia that ensures that all bodies maintain their angular momentum unless acted upon by an unbalanced torque. Likewise, Newton's Second Law of Motion can be used to derive an analogous equation for the instantaneous [[angular acceleration of the rigid body:
:$\backslash vec\; =\; I\backslash vec$
where
:$I$ is the [[moment of inertia of the body
:$\backslash scriptstyle\; \backslash vec$ is the angular acceleration of the body.
This provides a definition for the moment of inertia, which is the rotational equivalent for mass. In more advanced treatments of mechanics, where the rotation over a time interval is described, the moment of inertia must be substituted by the [[Moment of inertia tensor|tensor that, when properly analyzed, fully determines the characteristics of rotations including [[precession and [[nutation.
Equivalently, the differential form of Newton's Second Law provides an alternative definition of torque:
:$\backslash vec\; =\; \backslash frac,$ where $\backslash scriptstyle\; \backslash vec$ is the angular momentum of the particle.
Newton's Third Law of Motion requires that all objects exerting torques themselves experience equal and opposite torques, and therefore also directly implies the [[conservation of angular momentum for closed systems that experience rotations and [[revolution (geometry)|revolutions through the action of internal torques.
Centripetal force

For an object accelerating in circular motion, the unbalanced force acting on the object equals: :$\backslash vec\; =\; -\; \backslash frac$ where $m$ is the mass of the object, $v$ is the velocity of the object and $r$ is the distance to the center of the circular path and $\backslash scriptstyle\; \backslash hat$ is the [[unit vector pointing in the radial direction outwards from the center. This means that the unbalanced centripetal force felt by any object is always directed toward the center of the curving path. Such forces act perpendicular to the velocity vector associated with the motion of an object, and therefore do not change the [[speed of the object (magnitude of the velocity), but only the direction of the velocity vector. The unbalanced force that accelerates an object can be resolved into a component that is perpendicular to the path, and one that is tangential to the path. This yields both the tangential force, which accelerates the object by either slowing it down or speeding it up, and the radial (centripetal) force, which changes its direction.Kinematic integrals

Forces can be used to define a number of physical concepts by [[integration (calculus)|integrating with respect to [[kinematics|kinematic variables. For example, integrating with respect to time gives the definition of [[Impulse (physics)|impulse: :$\backslash vec=\backslash int\_^,$ which by Newton's Second Law must be equivalent to the change in momentum (yielding the [[Impulse momentum theorem). Similarly, integrating with respect to position gives a definition for the [[work (physics)|work done by a force: :$W=\backslash int\_^,$ which is equivalent to changes in [[kinetic energy (yielding the [[work energy theorem). [[Power (physics)|Power ''P'' is the rate of change d''W''/d''t'' of the work ''W'', as the [[trajectory is extended by a position change $\backslash scriptstyle\; \backslash vec$ in a time interval d''t'': :$\backslash textW\backslash ,\; =\backslash ,\; \backslash frac\backslash ,\; \backslash cdot\backslash ,\; \backslash text\backslash vec\backslash ,\; =\backslash ,\; \backslash vec\backslash ,\; \backslash cdot\backslash ,\; \backslash text\backslash vec,\; \backslash qquad\; \backslash text\; \backslash quad\; P\backslash ,\; =\backslash ,\; \backslash frac\backslash ,\; =\backslash ,\; \backslash frac\backslash ,\; \backslash cdot\backslash ,\; \backslash frac\backslash ,\; =\backslash ,\; \backslash vec\backslash ,\; \backslash cdot\backslash ,\; \backslash vec,$ with $$ thePotential energy

Instead of a force, often the mathematically related concept of a [[potential energy field can be used for convenience. For instance, the gravitational force acting upon an object can be seen as the action of the [[gravitational field that is present at the object's location. Restating mathematically the definition of energy (via the definition of [[Mechanical work|work), a potential [[scalar field $\backslash scriptstyle$ is defined as that field whose [[gradient is equal and opposite to the force produced at every point: :$\backslash vec=-\backslash vec\; U.$ Forces can be classified as [[Conservative force|conservative or nonconservative. Conservative forces are equivalent to the gradient of a [[potential while nonconservative forces are not.Conservative forces

A conservative force that acts on a [[closed system has an associated mechanical work that allows energy to convert only between [[kinetic energy|kinetic or [[potential energy|potential forms. This means that for a closed system, the net [[mechanical energy is conserved whenever a conservative force acts on the system. The force, therefore, is related directly to the difference in potential energy between two different locations in space, and can be considered to be an artifact of the potential field in the same way that the direction and amount of a flow of water can be considered to be an artifact of the [[contour map of the elevation of an area. Conservative forces include [[gravity, the [[Electromagnetism|electromagnetic force, and the [[Hooke's law|spring force. Each of these forces has models that are dependent on a position often given as a [[radius|radial vector $\backslash scriptstyle\; \backslash vec$ emanating from [[spherical symmetry|spherically symmetric potentials. Examples of this follow: For gravity: :$\backslash vec\_g\; =\; -\; \backslash frac\; \backslash hat$ where $G$ is the [[gravitational constant, and $m\_n$ is the mass of object ''n''. For electrostatic forces: :$\backslash vec\_e\; =\; \backslash frac\; \backslash hat$ where $\backslash epsilon\_$ is [[Permittivity|electric permittivity of free space, and $q\_n$ is the [[electric charge of object ''n''. For spring forces: :$\backslash vec\_s\; =\; -\; k\; r\; \backslash hat$ where $k$ is the [[spring constant.Nonconservative forces

For certain physical scenarios, it is impossible to model forces as being due to gradient of potentials. This is often due to macrophysical considerations that yield forces as arising from a macroscopic statistical average of [[Microstate (statistical mechanics)|microstates. For example, friction is caused by the gradients of numerous electrostatic potentials between the [[atoms, but manifests as a force model that is independent of any macroscale position vector. Nonconservative forces other than friction include other [[contact forces, [[Tension (physics)|tension, [[Physical compression|compression, and [[drag (physics)|drag. However, for any sufficiently detailed description, all these forces are the results of conservative ones since each of these macroscopic forces are the net results of the gradients of microscopic potentials. The connection between macroscopic nonconservative forces and microscopic conservative forces is described by detailed treatment with [[statistical mechanics. In macroscopic closed systems, nonconservative forces act to change the [[internal energy|internal energies of the system, and are often associated with the transfer of heat. According to the [[Second law of thermodynamics, nonconservative forces necessarily result in energy transformations within closed systems from ordered to more random conditions as [[entropy increases.Units of measurement

The [[SI unit of force is the [[Newton (unit)|newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or . The corresponding [[CGS unit is the [[dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or . A newton is thus equal to 100,000 dynes. The gravitational [[foot-pound-second [[English unit of force is the [[pound-force (lbf), defined as the force exerted by gravity on a [[pound-mass in the [[Standard gravity|standard gravitational field of . The pound-force provides an alternative unit of mass: one [[slug (unit)|slug is the mass that will accelerate by one foot per second squared when acted on by one pound-force. An alternative unit of force in a different foot-pound-second system, the absolute fps system, is the [[poundal, defined as the force required to accelerate a one-pound mass at a rate of one foot per second squared. The units of [[slug (unit)|slug and [[poundal are designed to avoid a constant of proportionality in [[Newton's Second Law. The pound-force has a metric counterpart, less commonly used than the newton: the [[kilogram-force (kgf) (sometimes kilopond), is the force exerted by standard gravity on one kilogram of mass. The kilogram-force leads to an alternate, but rarely used unit of mass: the [[metric slug (sometimes mug or hyl) is that mass that accelerates at when subjected to a force of 1 kgf. The kilogram-force is not a part of the modern SI system, and is generally deprecated; however it still sees use for some purposes as expressing aircraft weight, jet thrust, bicycle spoke tension, torque wrench settings and engine output torque. Other arcane units of force include the [[sthène, which is equivalent to 1000 N, and the [[kip (unit)|kip, which is equivalent to 1000 lbf. See also [[Ton-force.Force measurement

See [[force gauge, [[spring scale, [[load cellSee also

* *Notes

References

Further reading

* * * * * * * * * * *External links

Video lecture on Newton's three laws

by [[Walter Lewin from [[MIT OpenCourseWare

A Java simulation on vector addition of forces

Force demonstrated as any influence on an object that changes the object's shape or motion (video)

{{good article [[Category:Force| [[Category:Natural philosophy [[Category:Classical mechanics [[Category:Vector physical quantities [[Category:Temporal rates