In

velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...

.
If Newton's second law is applied to a system of constant mass,"It is important to note that we ''cannot'' derive a general expression for Newton's second law for variable mass systems by treating the mass in F = ''d''P/''dt'' = ''d''(''M''v) as a ''variable''. ..We ''can'' use F = ''d''P/''dt'' to analyze variable mass systems ''only'' if we apply it to an entire system of constant mass having parts among which there is an interchange of mass." mphasis as in the original ''m'' may be moved outside the derivative operator. The equation then becomes
$$\backslash vec\; =\; m\backslash frac.$$
By substituting the definition of acceleration, the algebraic version of Newton's second law is derived:
$$\backslash vec\; =m\backslash vec.$$
Newton never explicitly stated the formula in the reduced form above.
Newton's second law asserts the direct proportionality of acceleration to force and the inverse proportionality of acceleration to mass. Accelerations can be defined through

velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...

was completely equivalent to rest. This was contrary to Aristotle's notion of a "natural state" of rest that objects with mass naturally approached. Simple experiments showed that Galileo's understanding of the equivalence of constant velocity and rest were correct. For example, if a mariner dropped a cannonball from the crow's nest of a ship moving at a constant velocity, Aristotelian physics would have the cannonball fall straight down while the ship moved beneath it. Thus, in an Aristotelian universe, the falling cannonball would land behind the foot of the mast of a moving ship. However, when this experiment is actually conducted, the cannonball always falls at the foot of the mast, as if the cannonball knows to travel with the ship despite being separated from it. Since there is no forward horizontal force being applied on the cannonball as it falls, the only conclusion left is that the cannonball continues to move with the same velocity as the boat as it falls. Thus, no force is required to keep the cannonball moving at the constant forward velocity.
Moreover, any object traveling at a constant velocity must be subject to zero net force (resultant force). This is the definition of dynamic equilibrium: when all the forces on an object balance but it still moves at a constant velocity.
A simple case of dynamic equilibrium occurs in constant velocity motion across a surface with kinetic friction. In such a situation, a force is applied in the direction of motion while the kinetic friction force exactly opposes the applied force. This results in zero net force, but since the object started with a non-zero velocity, it continues to move with a non-zero velocity. Aristotle misinterpreted this motion as being caused by the applied force. However, when kinetic friction is taken into consideration it is clear that there is no net force causing constant velocity motion.

mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementa ...

es. All other forces in nature derive from these four fundamental interactions. For example,

velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...

of the particle that is cross product, crossed with the magnetic field ($\backslash vec$).
The origin of electric and magnetic fields would not be fully explained until 1864 when James Clerk Maxwell unified a number of earlier theories into a set of 20 scalar equations, which were later reformulated into 4 vector equations by Oliver Heaviside and Josiah Willard Gibbs. These "Maxwell Equations" fully described the sources of the fields as being stationary and moving charges, and the interactions of the fields themselves. This led Maxwell to discover that electric and magnetic fields could be "self-generating" through a wave that traveled at a speed that he calculated to be the

^{+} and W^{−} bosons, and neutral current, involving electrically neutral Z^{0} bosons. The most familiar effect of weak interaction is beta decay (of neutrons in atomic nuclei) and the associated radioactivity. This is a type of charged-current interaction. The word "weak" derives from the fact that the field strength is some 10^{13} times less than that of the strong force. Still, it is stronger than gravity over short distances. A consistent electroweak theory has also been developed, which shows that electromagnetic forces and the weak force are indistinguishable at a temperatures in excess of approximately 10^{15} kelvins. Such temperatures have been probed in modern particle accelerators and show the conditions of the universe in the early moments of the Big Bang.

velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...

, and angular momentum for momentum. As a consequence of Newton's First Law of Motion, there exists rotational inertia that ensures that all bodies maintain their angular momentum unless acted upon by an unbalanced torque. Likewise, Newton's Second Law of Motion can be used to derive an analogous equation for the instantaneous angular acceleration of the rigid body:
$$\backslash vec\; =\; I\backslash vec$$
where
*$I$ is the moment of inertia of the body
*$\backslash vec$ is the angular acceleration of the body.
This provides a definition for the moment of inertia, which is the rotational equivalent for mass. In more advanced treatments of mechanics, where the rotation over a time interval is described, the moment of inertia must be substituted by the Moment of inertia tensor, tensor that, when properly analyzed, fully determines the characteristics of rotations including precession and nutation.
Equivalently, the differential form of Newton's Second Law provides an alternative definition of torque:
$$\backslash vec\; =\; \backslash frac,$$
where $\backslash vec$ is the angular momentum of the particle.
Newton's Third Law of Motion requires that all objects exerting torques themselves experience equal and opposite torques, and therefore also directly implies the conservation of angular momentum for closed systems that experience rotations and revolution (geometry), revolutions through the action of internal torques.

velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...

.

Video lecture on Newton's three laws

by Walter Lewin from MIT OpenCourseWare

A Java simulation on vector addition of forces

Force demonstrated as any influence on an object that changes the object's shape or motion (video)

{{good article Force, Natural philosophy Classical mechanics Vector physical quantities Temporal rates

physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relat ...

, a force is an influence that can change the motion of an object
Object may refer to:
General meanings
* Object (philosophy), a thing, being, or concept
** Object (abstract), an object which does not exist at any particular time or place
** Physical object, an identifiable collection of matter
* Goal, an ai ...

. A force can cause an object with mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementa ...

to change its velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...

(e.g. moving from a state of rest), i.e., to accelerate
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by t ...

. Force can also be described intuitively as a push or a pull. A force has both magnitude
Magnitude may refer to:
Mathematics
*Euclidean vector, a quantity defined by both its magnitude and its direction
*Magnitude (mathematics), the relative size of an object
*Norm (mathematics), a term for the size or length of a vector
*Order of ...

and direction
Direction may refer to:
*Relative direction, for instance left, right, forward, backwards, up, and down
** Anatomical terms of location for those used in anatomy
** List of ship directions
*Cardinal direction
Mathematics and science
* Directi ...

, making it a vector
Vector most often refers to:
* Euclidean vector, a quantity with a magnitude and a direction
* Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathemat ...

quantity. It is measured in the SI unit
The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. ...

of newton (N). Force is represented by the symbol (formerly ).
The original form of Newton's second law states that the net force acting upon an object is equal to the rate
Rate or rates may refer to:
Finance
* Rates (tax), a type of taxation system in the United Kingdom used to fund local government
* Exchange rate, rate at which one currency will be exchanged for another
Mathematics and science
* Rate (mathema ...

at which its momentum changes with time. If the mass of the object is constant, this law implies that the acceleration of an object is directly proportional to the net force acting on the object, is in the direction of the net force, and is inversely proportional to the mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementa ...

of the object.
Concepts related to force include: thrust
Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that s ...

, which increases the velocity of an object; drag
Drag or The Drag may refer to:
Places
* Drag, Norway, a village in Tysfjord municipality, Nordland, Norway
* ''Drág'', the Hungarian name for Dragu Commune in Sălaj County, Romania
* Drag (Austin, Texas), the portion of Guadalupe Street a ...

, which decreases the velocity of an object; and torque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of the ...

, which produces changes in rotational speed of an object. In an extended body, each part usually applies forces on the adjacent parts; the distribution of such forces through the body is the internal mechanical stress
In continuum mechanics, stress is a physical quantity. It is a quantity that describes the magnitude of forces that cause deformation. Stress is defined as ''force per unit area''. When an object is pulled apart by a force it will cause elonga ...

. Such internal mechanical stresses cause no acceleration of that body as the forces balance one another. Pressure, the distribution of many small forces applied over an area of a body, is a simple type of stress that if unbalanced can cause the body to accelerate. Stress usually causes deformation
Deformation can refer to:
* Deformation (engineering), changes in an object's shape or form due to the application of a force or forces.
** Deformation (physics), such changes considered and analyzed as displacements of continuum bodies.
* Def ...

of solid materials, or flow in fluid
In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear f ...

s.
Development of the concept

Philosophers inantiquity
Antiquity or Antiquities may refer to:
Historical objects or periods Artifacts
*Antiquities, objects or artifacts surviving from ancient cultures
Eras
Any period before the European Middle Ages (5th to 15th centuries) but still within the histo ...

used the concept of force in the study of stationary and moving objects and simple machine
A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term re ...

s, but thinkers such as Aristotle and Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...

retained fundamental errors in understanding force. In part this was due to an incomplete understanding of the sometimes non-obvious force of friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative lateral motion of ...

, and a consequently inadequate view of the nature of natural motion. A fundamental error was the belief that a force is required to maintain motion, even at a constant velocity. Most of the previous misunderstandings about motion and force were eventually corrected by Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...

and Sir Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the g ...

. With his mathematical insight, Sir Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the g ...

formulated laws of motion that were not improved for nearly three hundred years. By the early 20th century, Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...

developed a theory of relativity
The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena ...

that correctly predicted the action of forces on objects with increasing momenta near the speed of light, and also provided insight into the forces produced by gravitation and inertia.
With modern insights into quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...

and technology that can accelerate particles close to the speed of light, particle physics has devised a Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...

to describe forces between particles smaller than atoms. The Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...

predicts that exchanged particles called gauge boson
In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of ga ...

s are the fundamental means by which forces are emitted and absorbed. Only four main interactions are known: in order of decreasing strength, they are: strong, electromagnetic
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions ...

, weak, and gravitational
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...

. High-energy particle physics observations made during the 1970s and 1980s confirmed that the weak and electromagnetic forces are expressions of a more fundamental electroweak
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...

interaction.
Pre-Newtonian concepts

Since antiquity the concept of force has been recognized as integral to the functioning of each of thesimple machine
A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term re ...

s. The mechanical advantage given by a simple machine allowed for less force to be used in exchange for that force acting over a greater distance for the same amount of work
Work may refer to:
* Work (human activity), intentional activity people perform to support themselves, others, or the community
** Manual labour, physical work done by humans
** House work, housework, or homemaking
** Working animal, an animal ...

. Analysis of the characteristics of forces ultimately culminated in the work of Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...

who was especially famous for formulating a treatment of buoyant force
Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the ...

s inherent in fluid
In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear f ...

s.
Aristotle provided a philosophical discussion of the concept of a force as an integral part of Aristotelian cosmology. In Aristotle's view, the terrestrial sphere contained four elements that come to rest at different "natural places" therein. Aristotle believed that motionless objects on Earth, those composed mostly of the elements earth and water, to be in their natural place on the ground and that they will stay that way if left alone. He distinguished between the innate tendency of objects to find their "natural place" (e.g., for heavy bodies to fall), which led to "natural motion", and unnatural or forced motion, which required continued application of a force. This theory, based on the everyday experience of how objects move, such as the constant application of a force needed to keep a cart moving, had conceptual trouble accounting for the behavior of projectiles, such as the flight of arrows. The place where the archer moves the projectile was at the start of the flight, and while the projectile sailed through the air, no discernible efficient cause acts on it. Aristotle was aware of this problem and proposed that the air displaced through the projectile's path carries the projectile to its target. This explanation demands a continuum like air for change of place in general.
Aristotelian physics
Aristotelian physics is the form of natural science described in the works of the Greek philosopher Aristotle (384–322 BC). In his work ''Physics'', Aristotle intended to establish general principles of change that govern all natural bodies, bo ...

began facing criticism in medieval science, first by John Philoponus
John Philoponus (Greek: ; ; c. 490 – c. 570), also known as John the Grammarian or John of Alexandria, was a Byzantine Greek philologist, Aristotelian commentator, Christian theologian and an author of a considerable number of philosophical tr ...

in the 6th century.
The shortcomings of Aristotelian physics would not be fully corrected until the 17th century work of Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...

, who was influenced by the late medieval idea that objects in forced motion carried an innate force of impetus. Galileo constructed an experiment in which stones and cannonballs were both rolled down an incline to disprove the Aristotelian theory of motion. He showed that the bodies were accelerated by gravity to an extent that was independent of their mass and argued that objects retain their velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...

unless acted on by a force, for example friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative lateral motion of ...

.Drake, Stillman (1978). Galileo At Work. Chicago: University of Chicago Press.
In the early 17th century, before Newton's Principia, the term "force" ( la, vis) was applied to many physical and non-physical phenomena, e.g., for an acceleration of a point. The product of a point mass and the square of its velocity was named (live force) by Leibniz. The modern concept of force corresponds to Newton's (accelerating force).
Newtonian mechanics

Sir Isaac Newton described the motion of all objects using the concepts of inertia and force, and in doing so he found they obey certain conservation laws. In 1687, Newton published his thesis '' Philosophiæ Naturalis Principia Mathematica''. This is a recent translation into English by I. Bernard Cohen and Anne Whitman, with help from Julia Budenz. In this work Newton set out three laws of motion that to this day are the way forces are described in physics.First law

Newton's first law of motion states that objects continue to move in a state of constant velocity unless acted upon by an external net force (resultant force). This law is an extension of Galileo's insight that constant velocity was associated with a lack of net force (see a more detailed description of this below). Newton proposed that every object with mass has an innate inertia that functions as the fundamental equilibrium "natural state" in place of the Aristotelian idea of the "natural state of rest". That is, Newton's empirical first law contradicts the intuitive Aristotelian belief that a net force is required to keep an object moving with constant velocity. By making ''rest'' physically indistinguishable from ''non-zero constant velocity'', Newton's first law directly connects inertia with the concept of relative velocities. Specifically, in systems where objects are moving with different velocities, it is impossible to determine which object is "in motion" and which object is "at rest". The laws of physics are the same in every inertial frame of reference, that is, in all frames related by aGalilean transformation
In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotatio ...

.
For instance, while traveling in a moving vehicle at a constant velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...

, the laws of physics do not change as a result of its motion. If a person riding within the vehicle throws a ball straight up, that person will observe it rise vertically and fall vertically and not have to apply a force in the direction the vehicle is moving. Another person, observing the moving vehicle pass by, would observe the ball follow a curving parabolic path in the same direction as the motion of the vehicle. It is the inertia of the ball associated with its constant velocity in the direction of the vehicle's motion that ensures the ball continues to move forward even as it is thrown up and falls back down. From the perspective of the person in the car, the vehicle and everything inside of it is at rest: It is the outside world that is moving with a constant speed in the opposite direction of the vehicle. Since there is no experiment that can distinguish whether it is the vehicle that is at rest or the outside world that is at rest, the two situations are considered to be physically indistinguishable. Inertia therefore applies equally well to constant velocity motion as it does to rest.
Second law

A modern statement of Newton's second law is a vector equation:Newton's ''Principia Mathematica'' actually used a finite difference version of this equation based upon ''impulse''. See ''Impulse
Impulse or Impulsive may refer to:
Science
* Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time
* Impulse noise (disambiguation)
* Specific impulse, the change in momentum per un ...

''.
$$\backslash vec\; =\; \backslash frac,$$
where $\backslash vec$ is the momentum of the system, and $\backslash vec$ is the net (vector sum
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors ...

) force. If a body is in equilibrium, there is zero ''net'' force by definition (balanced forces may be present nevertheless). In contrast, the second law states that if there is an ''unbalanced'' force acting on an object it will result in the object's momentum changing over time.
By the definition of momentum,
$$\backslash vec\; =\; \backslash frac\; =\; \backslash frac,$$
where ''m'' is the mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementa ...

and $\backslash vec$ is the kinematic
Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a fie ...

measurements. However, while kinematics are well-described through reference frame
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points― geometric points whose position is identified both mathem ...

analysis in advanced physics, there are still deep questions that remain as to what is the proper definition of mass. General relativity offers an equivalence between space-time
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differe ...

and mass, but lacking a coherent theory of quantum gravity, it is unclear as to how or whether this connection is relevant on microscales. With some justification, Newton's second law can be taken as a quantitative definition of ''mass'' by writing the law as an equality; the relative units of force and mass then are fixed.
Some textbooks use Newton's second law as a ''definition'' of force, but this has been disparaged in other textbooks. Notable physicists, philosophers and mathematicians who have sought a more explicit definition of the concept of force include Ernst Mach and Walter Noll.
Newton's second law can be used to measure the strength of forces. For instance, knowledge of the masses of planet
A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...

s along with the accelerations of their orbits allows scientists to calculate the gravitational forces on planets.
Third law

Whenever one body exerts a force on another, the latter simultaneously exerts an equal and opposite force on the first. In vector form, if $\backslash vec\_$ is the force of body 1 on body 2 and $\backslash vec\_$ that of body 2 on body 1, then $$\backslash vec\_=-\backslash vec\_.$$ This law is sometimes referred to as the ''action-reaction law'', with $\backslash vec\_$ called the ''action'' and $-\backslash vec\_$ the '' reaction''. Newton's Third Law is a result of applyingsymmetry
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...

to situations where forces can be attributed to the presence of different objects. The third law means that all forces are ''interactions'' between different bodies,"Any single force is only one aspect of a mutual interaction between ''two'' bodies." and thus that there is no such thing as a unidirectional force or a force that acts on only one body.
In a system composed of object 1 and object 2, the net force on the system due to their mutual interactions is zero:
$$\backslash vec\_+\backslash vec\_=0.$$
More generally, in a closed system of particles, all internal forces are balanced. The particles may accelerate with respect to each other but the center of mass of the system will not accelerate. If an external force acts on the system, it will make the center of mass accelerate in proportion to the magnitude of the external force divided by the mass of the system.
Combining Newton's Second and Third Laws, it is possible to show that the linear momentum of a system is conserved. In a system of two particles, if $\backslash vec\_1$ is the momentum of object 1 and $\backslash vec\_$ the momentum of object 2, then
$$\backslash frac\; +\; \backslash frac=\; \backslash vec\_\; +\; \backslash vec\_\; =\; 0.$$
Using similar arguments, this can be generalized to a system with an arbitrary number of particles. In general, as long as all forces are due to the interaction of objects with mass, it is possible to define a system such that net momentum is never lost nor gained.
Special theory of relativity

In thespecial theory of relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The law ...

, mass and energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat ...

are equivalent (as can be seen by calculating the work required to accelerate an object). When an object's velocity increases, so does its energy and hence its mass equivalent (inertia). It thus requires more force to accelerate it the same amount than it did at a lower velocity. Newton's Second Law
$$\backslash vec\; =\; \backslash frac$$
remains valid because it is a mathematical definition. But for relativistic momentum to be conserved, it must be redefined as:
$$\backslash vec\; =\; \backslash frac,$$
where $m\_0$ is the rest mass and $c$ the speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit for ...

.
The relativistic expression relating force and acceleration for a particle with constant non-zero rest mass $m$ moving in the $x$ direction is:
$$\backslash vec\; =\; \backslash left(\backslash gamma^3\; m\; a\_x,\; \backslash gamma\; m\; a\_y,\; \backslash gamma\; m\; a\_z\backslash right),$$
where
$$\backslash gamma\; =\; \backslash frac.$$
is called the Lorentz factor
The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...

.
In the early history of relativity, the expressions $\backslash gamma^3\; m$ and $\backslash gamma\; m$ were called longitudinal and transverse mass. Relativistic force does not produce a constant acceleration, but an ever-decreasing acceleration as the object approaches the speed of light. Note that $\backslash gamma$ approaches asymptotically an infinite value and is undefined for an object with a non-zero rest mass as it approaches the speed of light, and the theory yields no prediction at that speed.
If $v$ is very small compared to $c$, then $\backslash gamma$ is very close to 1 and
$$F\; =\; m\; a$$
is a close approximation. Even for use in relativity, however, one can restore the form of
$$F^\backslash mu\; =\; mA^\backslash mu$$
through the use of four-vectors
In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...

. This relation is correct in relativity when $F^\backslash mu$ is the four-force In the special theory of relativity, four-force is a four-vector that replaces the classical force.
In special relativity
The four-force is defined as the rate of change in the four-momentum of a particle with respect to the particle's proper ti ...

, $m$ is the invariant mass
The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...

, and $A^\backslash mu$ is the four-acceleration In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has ap ...

.
Descriptions

Since forces are perceived as pushes or pulls, this can provide an intuitive understanding for describing forces. As with other physical concepts (e.g. temperature), the intuitive understanding of forces is quantified using precise operational definitions that are consistent with directobservations
Observation is the active acquisition of information from a primary source. In living beings, observation employs the senses. In science, observation can also involve the perception and recording of data via the use of scientific instruments. The ...

and compared to a standard measurement scale. Through experimentation, it is determined that laboratory measurements of forces are fully consistent with the conceptual definition of force offered by Newtonian mechanics
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:
# A body remains at rest, or in motio ...

.
Forces act in a particular direction
Direction may refer to:
*Relative direction, for instance left, right, forward, backwards, up, and down
** Anatomical terms of location for those used in anatomy
** List of ship directions
*Cardinal direction
Mathematics and science
* Directi ...

and have sizes
Size in general is the magnitude or dimensions of a thing. More specifically, ''geometrical size'' (or ''spatial size'') can refer to linear dimensions (length, width, height, diameter, perimeter), area, or volume. Size can also be meas ...

dependent upon how strong the push or pull is. Because of these characteristics, forces are classified as " vector quantities". This means that forces follow a different set of mathematical rules than physical quantities that do not have direction (denoted scalar quantities). For example, when determining what happens when two forces act on the same object, it is necessary to know both the magnitude and the direction of both forces to calculate the result
A result (also called upshot) is the final consequence of a sequence of actions or events expressed qualitatively or quantitatively. Possible results include advantage, disadvantage, gain, injury, loss, value and victory. There may be a range of ...

. If both of these pieces of information are not known for each force, the situation is ambiguous. For example, if you know that two people are pulling on the same rope with known magnitudes of force but you do not know which direction either person is pulling, it is impossible to determine what the acceleration of the rope will be. The two people could be pulling against each other as in tug of war
Tug of war (also known as tug o' war, tug war, rope war, rope pulling, or tugging war) is a sport that pits two teams against each other in a test of strength: teams pull on opposite ends of a rope, with the goal being to bring the rope a certa ...

or the two people could be pulling in the same direction. In this simple one-dimensional
In physics and mathematics, a sequence of ''n'' numbers can specify a location in ''n''-dimensional space. When , the set of all such locations is called a one-dimensional space. An example of a one-dimensional space is the number line, where the ...

example, without knowing the direction of the forces it is impossible to decide whether the net force is the result of adding the two force magnitudes or subtracting one from the other. Associating forces with vectors avoids such problems.
Historically, forces were first quantitatively investigated in conditions of static equilibrium where several forces canceled each other out. Such experiments demonstrate the crucial properties that forces are additive vector quantities: they have magnitude
Magnitude may refer to:
Mathematics
*Euclidean vector, a quantity defined by both its magnitude and its direction
*Magnitude (mathematics), the relative size of an object
*Norm (mathematics), a term for the size or length of a vector
*Order of ...

and direction. When two forces act on a point particle, the resulting force, the ''resultant'' (also called the '' net force''), can be determined by following the parallelogram rule of vector addition
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors a ...

: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal of the parallelogram. The magnitude of the resultant varies from the difference of the magnitudes of the two forces to their sum, depending on the angle between their lines of action. However, if the forces are acting on an extended body, their respective lines of application must also be specified in order to account for their effects on the motion of the body.
Free-body diagrams can be used as a convenient way to keep track of forces acting on a system. Ideally, these diagrams are drawn with the angles and relative magnitudes of the force vectors preserved so that graphical vector addition can be done to determine the net force.
As well as being added, forces can also be resolved into independent components at right angles to each other. A horizontal force pointing northeast can therefore be split into two forces, one pointing north, and one pointing east. Summing these component forces using vector addition yields the original force. Resolving force vectors into components of a set of basis vectors is often a more mathematically clean way to describe forces than using magnitudes and directions. This is because, for orthogonal components, the components of the vector sum are uniquely determined by the scalar addition of the components of the individual vectors. Orthogonal components are independent of each other because forces acting at ninety degrees to each other have no effect on the magnitude or direction of the other. Choosing a set of orthogonal basis vectors is often done by considering what set of basis vectors will make the mathematics most convenient. Choosing a basis vector that is in the same direction as one of the forces is desirable, since that force would then have only one non-zero component. Orthogonal force vectors can be three-dimensional with the third component being at right-angles to the other two.
Equilibrium

When all the forces that act upon an object are balanced, then the object is said to be in a state of equilibrium. Hence, equilibrium occurs when the resultant force acting on a point particle is zero (that is, the vector sum of all forces is zero). When dealing with an extended body, it is also necessary that the net torque be zero. There are two kinds of equilibrium: static equilibrium anddynamic equilibrium
In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the co ...

.
Static

Static equilibrium was understood well before the invention of classical mechanics. Objects that are at rest have zero net force acting on them. The simplest case of static equilibrium occurs when two forces are equal in magnitude but opposite in direction. For example, an object on a level surface is pulled (attracted) downward toward the center of the Earth by the force of gravity. At the same time, a force is applied by the surface that resists the downward force with equal upward force (called a normal force). The situation produces zero net force and hence no acceleration. Pushing against an object that rests on a frictional surface can result in a situation where the object does not move because the applied force is opposed by static friction, generated between the object and the table surface. For a situation with no movement, the static friction force ''exactly'' balances the applied force resulting in no acceleration. The static friction increases or decreases in response to the applied force up to an upper limit determined by the characteristics of the contact between the surface and the object. A static equilibrium between two forces is the most usual way of measuring forces, using simple devices such asweighing scale
A scale or balance is a device used to measure weight or mass. These are also known as mass scales, weight scales, mass balances, and weight balances.
The traditional scale consists of two plates or bowls suspended at equal distances from ...

s and spring balance
A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a spring fixed at one end with a hook to attach an object at the other. It works in accordance with Hooke's Law, which states t ...

s. For example, an object suspended on a vertical spring scale
A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a spring fixed at one end with a hook to attach an object at the other. It works in accordance with Hooke's Law, which states ...

experiences the force of gravity acting on the object balanced by a force applied by the "spring reaction force", which equals the object's weight. Using such tools, some quantitative force laws were discovered: that the force of gravity is proportional to volume for objects of constant density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...

(widely exploited for millennia to define standard weights); Archimedes' principle for buoyancy; Archimedes' analysis of the lever; Boyle's law
Boyle's law, also referred to as the Boyle–Mariotte law, or Mariotte's law (especially in France), is an experimental gas law that describes the relationship between pressure and volume of a confined gas. Boyle's law has been stated as:
The ...

for gas pressure; and Hooke's law for springs. These were all formulated and experimentally verified before Isaac Newton expounded his Three Laws of Motion.
Dynamic

Dynamic equilibrium was first described byGalileo
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...

who noticed that certain assumptions of Aristotelian physics were contradicted by observations and logic. Galileo realized that simple velocity addition demands that the concept of an "absolute rest frame" did not exist. Galileo concluded that motion in a constant Forces in quantum mechanics

The notion "force" keeps its meaning inquantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...

, though one is now dealing with operators instead of classical variables and though the physics is now described by the Schrödinger equation
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...

instead of Newtonian mechanics, Newtonian equations. This has the consequence that the results of a measurement are now sometimes "quantized", i.e. they appear in discrete portions. This is, of course, difficult to imagine in the context of "forces". However, the potentials or field (physics), fields, from which the forces generally can be derived, are treated similarly to classical position variables, i.e., $V(x,y,z)\backslash to\; (\backslash hat\; x,\backslash hat\; y,\backslash hat\; z)$.
This becomes different only in the framework of quantum field theory, where these fields are also quantized.
However, already in quantum mechanics there is one "caveat", namely the particles acting onto each other do not only possess the spatial variable, but also a discrete intrinsic angular momentum, angular momentum-like variable called the "Spin (physics), spin", and there is the Pauli exclusion principle relating the space and the spin variables. Depending on the value of the spin, identical particles split into two different classes, fermions and bosons. If two identical fermions (e.g. electrons) have a ''symmetric'' spin function (e.g. parallel spins) the spatial variables must be ''antisymmetric'' (i.e. they exclude each other from their places much as if there was a repulsive force), and vice versa, i.e. for antiparallel ''spins'' the ''position variables'' must be symmetric (i.e. the apparent force must be attractive). Thus in the case of two fermions there is a strictly negative correlation between spatial and spin variables, whereas for two bosons (e.g. quanta of electromagnetic waves, photons) the correlation is strictly positive.
Thus the notion "force" loses already part of its meaning.
Feynman diagrams

In modern particle physics, forces and the acceleration of particles are explained as a mathematical by-product of exchange of momentum-carryinggauge boson
In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of ga ...

s. With the development of quantum field theory and general relativity, it was realized that force is a redundant concept arising from conservation of momentum (4-momentum in relativity and momentum of virtual particles in quantum electrodynamics). The conservation of momentum can be directly derived from the homogeneity or Symmetry in physics, symmetry of space and so is usually considered more fundamental than the concept of a force. Thus the currently known fundamental forces are considered more accurately to be "fundamental interactions". When particle A emits (creates) or absorbs (annihilates) virtual particle B, a momentum conservation results in recoil of particle A making impression of repulsion or attraction between particles A A' exchanging by B. This description applies to all forces arising from fundamental interactions. While sophisticated mathematical descriptions are needed to predict, in full detail, the accurate result of such interactions, there is a conceptually simple way to describe such interactions through the use of Feynman diagrams. In a Feynman diagram, each matter particle is represented as a straight line (see world line) traveling through time, which normally increases up or to the right in the diagram. Matter and anti-matter particles are identical except for their direction of propagation through the Feynman diagram. World lines of particles intersect at interaction vertices, and the Feynman diagram represents any force arising from an interaction as occurring at the vertex with an associated instantaneous change in the direction of the particle world lines. Gauge bosons are emitted away from the vertex as wavy lines and, in the case of virtual particle exchange, are absorbed at an adjacent vertex.
The utility of Feynman diagrams is that other types of physical phenomena that are part of the general picture of fundamental interactions but are conceptually separate from forces can also be described using the same rules. For example, a Feynman diagram can describe in succinct detail how a neutron beta decay, decays into an electron, proton, and neutrino, an interaction mediated by the same gauge boson that is responsible for the weak nuclear force.
Fundamental forces

All of the known forces of the universe are classified into four fundamental interactions. The strong and the weak forces act only at very short distances, and are responsible for the interactions between subatomic particles, including nucleons and compound Atomic nucleus, nuclei. The electromagnetic force acts between electric charges, and the gravitational force acts betweenfriction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative lateral motion of ...

is a manifestation of the electromagnetic force acting between atoms of two surfaces, and the Pauli exclusion principle, which does not permit atoms to pass through each other. Similarly, the forces in spring (device), springs, modeled by Hooke's law, are the result of electromagnetic forces and the Pauli exclusion principle acting together to return an object to its equilibrium position. Centrifugal force (fictitious), Centrifugal forces are acceleration forces that arise simply from the acceleration of rotation, rotating frames of reference.
The fundamental theories for forces developed from the Unified field theory, unification of different ideas. For example, Sir Isaac Newton unified, with his universal theory of gravitation, the force responsible for objects falling near the surface of the Earth with the force responsible for the falling of celestial bodies about the Earth (the Moon) and around the Sun (the planets). Michael Faraday and James Clerk Maxwell demonstrated that electric and magnetic forces were unified through a theory of electromagnetism. In the 20th century, the development of quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...

led to a modern understanding that the first three fundamental forces (all except gravity) are manifestations of matter (fermions) interacting by exchanging virtual particles called gauge boson
In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of ga ...

s. This Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...

of particle physics assumes a similarity between the forces and led scientists to predict the unification of the weak and electromagnetic forces in electroweak
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...

theory, which was subsequently confirmed by observation. The complete formulation of the Standard Model predicts an as yet unobserved Higgs mechanism, but observations such as neutrino oscillations suggest that the Standard Model is incomplete. A Grand Unified Theory that allows for the combination of the electroweak interaction with the strong force is held out as a possibility with candidate theories such as supersymmetry proposed to accommodate some of the outstanding unsolved problems in physics. Physicists are still attempting to develop self-consistent unification models that would combine all four fundamental interactions into a theory of everything. Einstein tried and failed at this endeavor, but currently the most popular approach to answering this question is string theory.
Gravitational

What we now call gravity was not identified as a universal force until the work of Isaac Newton. Before Newton, the tendency for objects to fall towards the Earth was not understood to be related to the motions of celestial objects. Galileo was instrumental in describing the characteristics of falling objects by determining that the acceleration of every object in free-fall was constant and independent of the mass of the object. Today, this Gravitational acceleration, acceleration due to gravity towards the surface of the Earth is usually designated as $\backslash vec$ and has a magnitude of about 9.81 meters per second squared (this measurement is taken from sea level and may vary depending on location), and points toward the center of the Earth. This observation means that the force of gravity on an object at the Earth's surface is directly proportional to the object's mass. Thus an object that has a mass of $m$ will experience a force: $$\backslash vec\; =\; m\backslash vec$$ For an object in free-fall, this force is unopposed and the net force on the object is its weight. For objects not in free-fall, the force of gravity is opposed by the reaction forces applied by their supports. For example, a person standing on the ground experiences zero net force, since a normal force (a reaction force) is exerted by the ground upward on the person that counterbalances his weight that is directed downward. Newton's contribution to gravitational theory was to unify the motions of heavenly bodies, which Aristotle had assumed were in a natural state of constant motion, with falling motion observed on the Earth. He proposed a Newton's law of gravity, law of gravity that could account for the celestial motions that had been described earlier using Kepler's laws of planetary motion. Newton came to realize that the effects of gravity might be observed in different ways at larger distances. In particular, Newton determined that the acceleration of the Moon around the Earth could be ascribed to the same force of gravity if the acceleration due to gravity decreased as an inverse square law. Further, Newton realized that the acceleration of a body due to gravity is proportional to the mass of the other attracting body. Combining these ideas gives a formula that relates the mass ($m\_\backslash oplus$) and the radius ($R\_\backslash oplus$) of the Earth to the gravitational acceleration: $$\backslash vec=-\backslash frac\; \backslash hat$$ where the vector direction is given by $\backslash hat$, is the unit vector directed outward from the center of the Earth. In this equation, a dimensional constant $G$ is used to describe the relative strength of gravity. This constant has come to be known as Newton's Universal Gravitation Constant, though its value was unknown in Newton's lifetime. Not until 1798 was Henry Cavendish able to make the first measurement of $G$ using a torsion balance; this was widely reported in the press as a measurement of the mass of the Earth since knowing $G$ could allow one to solve for the Earth's mass given the above equation. Newton, however, realized that since all celestial bodies followed the same Kepler's laws, laws of motion, his law of gravity had to be universal. Succinctly stated, Newton's Law of Gravitation states that the force on a spherical object of mass $m\_1$ due to the gravitational pull of mass $m\_2$ is $$\backslash vec=-\backslash frac\; \backslash hat$$ where $r$ is the distance between the two objects' centers of mass and $\backslash hat$ is the unit vector pointed in the direction away from the center of the first object toward the center of the second object. This formula was powerful enough to stand as the basis for all subsequent descriptions of motion within the solar system until the 20th century. During that time, sophisticated methods of perturbation analysis were invented to calculate the deviations of orbits due to the influence of multiple bodies on aplanet
A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...

, moon, comet, or asteroid. The formalism was exact enough to allow mathematicians to predict the existence of the planet Neptune before it was observed.
Mercury (planet), Mercury's orbit, however, did not match that predicted by Newton's Law of Gravitation. Some astrophysicists predicted the existence of another planet (Vulcan (hypothetical planet), Vulcan) that would explain the discrepancies; however no such planet could be found. When Albert Einstein formulated his theory of general relativity (GR) he turned his attention to the problem of Mercury's orbit and found that his theory added Perihelion precession of Mercury, a correction, which could account for the discrepancy. This was the first time that Newton's Theory of Gravity had been shown to be inexact.
Since then, general relativity has been acknowledged as the theory that best explains gravity. In GR, gravitation is not viewed as a force, but rather, objects moving freely in gravitational fields travel under their own inertia in geodesic, straight lines through curved space-time – defined as the shortest space-time path between two space-time events. From the perspective of the object, all motion occurs as if there were no gravitation whatsoever. It is only when observing the motion in a global sense that the curvature of space-time can be observed and the force is inferred from the object's curved path. Thus, the straight line path in space-time is seen as a curved line in space, and it is called the ''external ballistics, ballistic trajectory'' of the object. For example, a Basketball (ball), basketball thrown from the ground moves in a parabola, as it is in a uniform gravitational field. Its space-time trajectory is almost a straight line, slightly curved (with the radius of curvature (applications), radius of curvature of the order of few light-years). The time derivative of the changing momentum of the object is what we label as "gravitational force".
Electromagnetic

The electrostatic force was first described in 1784 by Coulomb as a force that existed intrinsically between two electric charge, charges. The properties of the electrostatic force were that it varied as an inverse square law directed in the polar coordinates, radial direction, was both attractive and repulsive (there was intrinsic Electrical polarity, polarity), was independent of the mass of the charged objects, and followed the superposition principle. Coulomb's law unifies all these observations into one succinct statement. Subsequent mathematicians and physicists found the construct of the ''electric field'' to be useful for determining the electrostatic force on an electric charge at any point in space. The electric field was based on using a hypothetical "test charge" anywhere in space and then using Coulomb's Law to determine the electrostatic force. Thus the electric field anywhere in space is defined as $$\backslash vec\; =$$ where $q$ is the magnitude of the hypothetical test charge. Meanwhile, the Lorentz force of magnetism was discovered to exist between two electric currents. It has the same mathematical character as Coulomb's Law with the proviso that like currents attract and unlike currents repel. Similar to the electric field, the magnetic field can be used to determine the magnetic force on an electric current at any point in space. In this case, the magnitude of the magnetic field was determined to be $$B\; =$$ where $I$ is the magnitude of the hypothetical test current and $\backslash ell$ is the length of hypothetical wire through which the test current flows. The magnetic field exerts a force on all magnets including, for example, those used in compasses. The fact that the geomagnetism, Earth's magnetic field is aligned closely with the orientation of the Earth's rotation, axis causes compass magnets to become oriented because of the magnetic force pulling on the needle. Through combining the definition of electric current as the time rate of change of electric charge, a rule of Cross product, vector multiplication called Lorentz force, Lorentz's Law describes the force on a charge moving in a magnetic field. The connection between electricity and magnetism allows for the description of a unified ''electromagnetic force'' that acts on a charge. This force can be written as a sum of the electrostatic force (due to the electric field) and the magnetic force (due to the magnetic field). Fully stated, this is the law: $$\backslash vec\; =\; q\backslash left(\backslash vec\; +\; \backslash vec\; \backslash times\; \backslash vec\backslash right)$$ where $\backslash vec$ is the electromagnetic force, $q$ is the magnitude of the charge of the particle, $\backslash vec$ is the electric field, $\backslash vec$ is thespeed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit for ...

. This insight united the nascent fields of electromagnetic theory with optics and led directly to a complete description of the electromagnetic spectrum.
However, attempting to reconcile electromagnetic theory with two observations, the photoelectric effect, and the nonexistence of the ultraviolet catastrophe, proved troublesome. Through the work of leading theoretical physicists, a new theory of electromagnetism was developed using quantum mechanics. This final modification to electromagnetic theory ultimately led to quantum electrodynamics (or QED), which fully describes all electromagnetic phenomena as being mediated by wave–particles known as photons. In QED, photons are the fundamental exchange particle, which described all interactions relating to electromagnetism including the electromagnetic force.For a complete library on quantum mechanics see Quantum mechanics#References, Quantum mechanics – References
Strong nuclear

There are two "nuclear forces", which today are usually described as interactions that take place in quantum theories of particle physics. The strong nuclear force is the force responsible for the structural integrity of atomic nuclei while the weak nuclear force is responsible for the decay of certain nucleons into leptons and other types of hadrons. The strong force is today understood to represent the interactions between quarks and gluons as detailed by the theory of quantum chromodynamics (QCD). The strong force is the fundamental force mediated by gluons, acting upon quarks, antiparticle, antiquarks, and the gluons themselves. The (aptly named) strong interaction is the "strongest" of the four fundamental forces. The strong force only acts ''directly'' upon elementary particles. However, a residual of the force is observed between hadrons (the best known example being the force that acts between nucleons in atomic nuclei) as the nuclear force. Here the strong force acts indirectly, transmitted as gluons, which form part of the virtual pi and rho mesons, which classically transmit the nuclear force (see this topic for more). The failure of many searches for free quarks has shown that the elementary particles affected are not directly observable. This phenomenon is called color confinement.Weak nuclear

The weak force is due to the exchange of the heavy W and Z bosons. Since the weak force is mediated by two types of bosons, it can be divided into two types of interaction or "Feynman diagram, vertices" — charged current, involving the electrically charged WNon-fundamental forces

Some forces are consequences of the fundamental ones. In such situations, idealized models can be used to gain physical insight.Normal force

The normal force is due to repulsive forces of interaction between atoms at close contact. When their electron clouds overlap, Pauli repulsion (due to fermionic nature of electrons) follows resulting in the force that acts in a direction Normal (geometry), normal to the surface interface between two objects. The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of the normal force in action is the impact force on an object crashing into an immobile surface.Friction

Friction is a surface force that opposes relative motion. The frictional force is directly related to the normal force that acts to keep two solid objects separated at the point of contact. There are two broad classifications of frictional forces: static friction and kinetic friction. The static friction force ($F\_$) will exactly oppose forces applied to an object parallel to a surface contact up to the limit specified by the coefficient of static friction ($\backslash mu\_$) multiplied by the normal force ($F\_N$). In other words, the magnitude of the static friction force satisfies the inequality: $$0\; \backslash le\; F\_\; \backslash le\; \backslash mu\_\; F\_\backslash mathrm.$$ The kinetic friction force ($F\_$) is independent of both the forces applied and the movement of the object. Thus, the magnitude of the force equals: $$F\_\; =\; \backslash mu\_\; F\_\backslash mathrm,$$ where $\backslash mu\_$ is the coefficient of kinetic friction. For most surface interfaces, the coefficient of kinetic friction is less than the coefficient of static friction.Tension

Tension forces can be modeled using ideal strings that are massless, frictionless, unbreakable, and unstretchable. They can be combined with ideal pulleys, which allow ideal strings to switch physical direction. Ideal strings transmit tension forces instantaneously in action-reaction pairs so that if two objects are connected by an ideal string, any force directed along the string by the first object is accompanied by a force directed along the string in the opposite direction by the second object. By connecting the same string multiple times to the same object through the use of a set-up that uses movable pulleys, the tension force on a load can be multiplied. For every string that acts on a load, another factor of the tension force in the string acts on the load. However, even though such machines allow for an mechanical advantage, increase in force, there is a corresponding increase in the length of string that must be displaced in order to move the load. These tandem effects result ultimately in the conservation of energy, conservation of mechanical energy since the #Kinematic integrals, work done on the load is the same no matter how complicated the machine.Elastic force

An elastic force acts to return a Spring (device), spring to its natural length. An ideal spring is taken to be massless, frictionless, unbreakable, and infinitely stretchable. Such springs exert forces that push when contracted, or pull when extended, in proportion to the displacement field (mechanics), displacement of the spring from its equilibrium position. This linear relationship was described by Robert Hooke in 1676, for whom Hooke's law is named. If $\backslash Delta\; x$ is the displacement, the force exerted by an ideal spring equals: $$\backslash vec=-k\; \backslash Delta\; \backslash vec$$ where $k$ is the spring constant (or force constant), which is particular to the spring. The minus sign accounts for the tendency of the force to act in opposition to the applied load.Continuum mechanics

Newton's laws and Newtonian mechanics in general were first developed to describe how forces affect idealized point particles rather than three-dimensional objects. However, in real life, matter has extended structure and forces that act on one part of an object might affect other parts of an object. For situations where lattice holding together the atoms in an object is able to flow, contract, expand, or otherwise change shape, the theories of continuum mechanics describe the way forces affect the material. For example, in extended fluid mechanics, fluids, differences in pressure result in forces being directed along the pressure gradients as follows: $$\backslash frac\; =\; -\; \backslash vec\; P$$ where $V$ is the volume of the object in the fluid and $P$ is the scalar function that describes the pressure at all locations in space. Pressure gradients and differentials result in the buoyancy, buoyant force for fluids suspended in gravitational fields, winds in atmospheric science, and the lift (physics), lift associated with aerodynamics and flight. A specific instance of such a force that is associated with dynamic pressure is fluid resistance: a body force that resists the motion of an object through a fluid due to viscosity. For so-called "Drag (physics)#Very low Reynolds numbers – Stokes' drag, Stokes' drag" the force is approximately proportional to the velocity, but opposite in direction: $$\backslash vec\_\backslash mathrm\; =\; -\; b\; \backslash vec$$ where: *$b$ is a constant that depends on the properties of the fluid and the dimensions of the object (usually the Cross section (geometry), cross-sectional area), and *$\backslash vec$ is the velocity of the object. More formally, forces in continuum mechanics are fully described by a Stress (mechanics), stress–tensor with terms that are roughly defined as $$\backslash sigma\; =\; \backslash frac$$ where $A$ is the relevant cross-sectional area for the volume for which the stress-tensor is being calculated. This formalism includes pressure terms associated with forces that act normal to the cross-sectional area (the matrix diagonals of the tensor) as well as Shear stress, shear terms associated with forces that act Parallel (geometry), parallel to the cross-sectional area (the off-diagonal elements). The stress tensor accounts for forces that cause all strain (physics), strains (deformations) including also tensile stresses and compression (physical), compressions.''University Physics'', Sears, Young & Zemansky, pp. 18–38Fictitious forces

There are forces that are frame dependent, meaning that they appear due to the adoption of non-Newtonian (that is, non-inertial frame, non-inertial) Frame of reference, reference frames. Such forces include the Centrifugal force (rotating reference frame), centrifugal force and the Coriolis force. These forces are considered fictitious because they do not exist in frames of reference that are not accelerating. Because these forces are not genuine they are also referred to as "pseudo forces". In general relativity, gravity becomes a fictitious force that arises in situations where spacetime deviates from a flat geometry. As an extension, Kaluza–Klein theory and string theory ascribe electromagnetism and the other Fundamental interaction, fundamental forces respectively to the curvature of differently scaled dimensions, which would ultimately imply that all forces are fictitious.Rotations and torque

Forces that cause extended objects to rotate are associated withtorque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of the ...

s. Mathematically, the torque of a force $\backslash vec$ is defined relative to an arbitrary reference point as the cross-product:
$$\backslash vec\; =\; \backslash vec\; \backslash times\; \backslash vec$$
where $\backslash vec$ is the position vector of the force application point relative to the reference point.
Torque is the rotation equivalent of force in the same way that angle is the rotational equivalent for position (vector), position, angular velocity for Centripetal force

For an object accelerating in circular motion, the unbalanced force acting on the object equals: $$\backslash vec\; =\; -\; \backslash frac$$ where $m$ is the mass of the object, $v$ is the velocity of the object and $r$ is the distance to the center of the circular path and $\backslash hat$ is the unit vector pointing in the radial direction outwards from the center. This means that the unbalanced centripetal force felt by any object is always directed toward the center of the curving path. Such forces act perpendicular to the velocity vector associated with the motion of an object, and therefore do not change the speed of the object (magnitude of the velocity), but only the direction of the velocity vector. The unbalanced force that accelerates an object can be resolved into a component that is perpendicular to the path, and one that is tangential to the path. This yields both the tangential force, which accelerates the object by either slowing it down or speeding it up, and the radial (centripetal) force, which changes its direction.Kinematic integrals

Forces can be used to define a number of physical concepts by integration (calculus), integrating with respect to kinematics, kinematic variables. For example, integrating with respect to time gives the definition of Impulse (physics), impulse: $$\backslash vec=\backslash int\_^,$$ which by Newton's Second Law must be equivalent to the change in momentum (yielding the Impulse momentum theorem). Similarly, integrating with respect to position gives a definition for the work (physics), work done by a force: $$W=\; \backslash int\_^\; ,$$ which is equivalent to changes in kinetic energy (yielding the work energy theorem). Power (physics), Power ''P'' is the rate of change d''W''/d''t'' of the work ''W'', as the trajectory is extended by a position change $d\backslash vec$ in a time interval d''t'': $$\backslash mathrmW\; =\; \backslash frac\; \backslash cdot\; \backslash mathrm\backslash vec\; =\; \backslash vec\; \backslash cdot\; \backslash mathrm\backslash vec,$$ so $$P\; =\; \backslash frac\; =\; \backslash frac\; \backslash cdot\; \backslash frac\; =\; \backslash vec\; \backslash cdot\; \backslash vec,$$ with $\backslash vec\; =\; \backslash mathrm\backslash vec/\backslash mathrmt$ thePotential energy

Instead of a force, often the mathematically related concept of a potential energy field can be used for convenience. For instance, the gravitational force acting upon an object can be seen as the action of the gravitational field that is present at the object's location. Restating mathematically the definition of energy (via the definition of Mechanical work, work), a potential scalar field $U(\backslash vec)$ is defined as that field whose gradient is equal and opposite to the force produced at every point: $$\backslash vec=-\backslash vec\; U.$$ Forces can be classified as Conservative force, conservative or nonconservative. Conservative forces are equivalent to the gradient of a potential while nonconservative forces are not.Conservative forces

A conservative force that acts on a closed system has an associated mechanical work that allows energy to convert only between kinetic energy, kinetic or potential energy, potential forms. This means that for a closed system, the net mechanical energy is conserved whenever a conservative force acts on the system. The force, therefore, is related directly to the difference in potential energy between two different locations in space, and can be considered to be an artifact of the potential field in the same way that the direction and amount of a flow of water can be considered to be an artifact of the contour map of the elevation of an area. Conservative forces include gravity, the Electromagnetism, electromagnetic force, and the Hooke's law, spring force. Each of these forces has models that are dependent on a position often given as a radius, radial vector $\backslash vec$ emanating from spherical symmetry, spherically symmetric potentials. Examples of this follow: For gravity: $$\backslash vec\_g\; =\; -\; \backslash frac\; \backslash hat$$ where $G$ is the gravitational constant, and $m\_n$ is the mass of object ''n''. For electrostatic forces: $$\backslash vec\_e\; =\; \backslash frac\; \backslash hat$$ where $\backslash varepsilon\_$ is Permittivity, electric permittivity of free space, and $q\_n$ is the electric charge of object ''n''. For spring forces: $$\backslash vec\_s\; =\; -\; k\; r\; \backslash hat$$ where $k$ is the spring constant.Nonconservative forces

For certain physical scenarios, it is impossible to model forces as being due to gradient of potentials. This is often due to macrophysical considerations that yield forces as arising from a macroscopic statistical average of Microstate (statistical mechanics), microstates. For example, friction is caused by the gradients of numerous electrostatic potentials between the atoms, but manifests as a force model that is independent of any macroscale position vector. Nonconservative forces other than friction include other contact forces, Tension (physics), tension, Physical compression, compression, and drag (physics), drag. However, for any sufficiently detailed description, all these forces are the results of conservative ones since each of these macroscopic forces are the net results of the gradients of microscopic potentials. The connection between macroscopic nonconservative forces and microscopic conservative forces is described by detailed treatment with statistical mechanics. In macroscopic closed systems, nonconservative forces act to change the internal energy, internal energies of the system, and are often associated with the transfer of heat. According to the Second law of thermodynamics, nonconservative forces necessarily result in energy transformations within closed systems from ordered to more random conditions as entropy increases.Units of measurement

The SI unit of force is the Newton (unit), newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or . The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or . A newton is thus equal to 100,000 dynes. The gravitational foot-pound-second English unit of force is the pound-force (lbf), defined as the force exerted by gravity on a pound-mass in the Standard gravity, standard gravitational field of . The pound-force provides an alternative unit of mass: one slug (unit), slug is the mass that will accelerate by one foot per second squared when acted on by one pound-force. An alternative unit of force in a different foot-pound-second system, the absolute fps system, is the poundal, defined as the force required to accelerate a one-pound mass at a rate of one foot per second squared. The units of slug (unit), slug and poundal are designed to avoid a constant of proportionality in Newton's Second Law. The pound-force has a metric counterpart, less commonly used than the newton: the kilogram-force (kgf) (sometimes kilopond), is the force exerted by standard gravity on one kilogram of mass. The kilogram-force leads to an alternate, but rarely used unit of mass: the metric slug (sometimes mug or hyl) is that mass that accelerates at when subjected to a force of 1 kgf. The kilogram-force is not a part of the modern SI system, and is generally deprecated; however it still sees use for some purposes as expressing aircraft weight, jet thrust, bicycle spoke tension, torque wrench settings and engine output torque. Other arcane units of force include the sthène, which is equivalent to 1000 N, and the kip (unit), kip, which is equivalent to 1000 lbf. See also Ton-force.Force measurement

See force gauge,spring scale
A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a spring fixed at one end with a hook to attach an object at the other. It works in accordance with Hooke's Law, which states ...

, load cell
See also

* *Notes

References

Further reading

* * * * * * * * * * *External links

Video lecture on Newton's three laws

by Walter Lewin from MIT OpenCourseWare

A Java simulation on vector addition of forces

Force demonstrated as any influence on an object that changes the object's shape or motion (video)

{{good article Force, Natural philosophy Classical mechanics Vector physical quantities Temporal rates